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Chapter 1

Introduction

1.1 Introduction

The structures of today are rapidly increasing in size and complexity compared to
those of even a few years ago. Additionally, with monetary constraints equating to
weight constraints, the structures of today are also becoming lighter than ever before.
While “large flexible structures” is typically a term reserved for space structures, it
can also include modern airframes and even buildings. The common denorminator for
large flexible structures is their inherently low damping and stiffness characteristics,

which necessitate the use of active control systems for vibration and shape control.

In the past, the structure and its control system have been designed independently.
Structural design and optimization, and control system design and optimization, have
both been areas cf separate research, each progressing vigorously along its own path.
However, spurred on by recent proposals of new, large, highly constrained space
structures, the question has arisen as to whether an integrated structural/control

design procedure might not be more appropriate.

The main aim of this work is to investigate this problem, setting forth and demon-
strating a design methodology with which practical integrated design problems can
be solved. The remainder of this chapter is devoted to a historical overview of the
coutrol/structure interaction (CSI) problem, with respect to the problem formula-
tion and the numerical solution techniques employed. Chapter 2 presents the general

mathematical programming formulation of the design problem, then considers how




the particular controller methodology under consideration modifies and adds to this

probem formulation.

In Chapter 3, the specific numerical solution techuique used in this work is pre-
sented. An algorithm is developed to solve the mathematical programming problem
as sct up in Chapter 2, and a numerical technique for the special case when full state
feedback control is used is considered. In Chapter 4, the solution algorithm is illus-
trated on a representative structure — the DRAPER I Tetrahedral Truss structure.
Finally, from these results some general conclusions about this problem are drawn,

and recommendations for future topics of research given, in Chapter 5.

1.2 Historical backgroiw.nd

The first papers actively investigating the question of simultaneous structure and
control design began appearing in the literature around 1983 [Han, Kom, Hal-1]. Since
then, there has been a growing interest in this subject from other authors, although
the field itself is still in relative infancy. This section will attempt to review the current
state of the art in the simultaneous structure/control optimization of large flexible
structures. The section is broken into two main parts dealing with the general problem
formulations presented and the numerical solution techniques employed. Although
these are somewhat related, they are largely separate since several numerical methods
could be used to solve each formulation, and several formulations could be solved using

the same numerical procedure.

1.2.1 Problem Formulation

Most authors begin by assuming, if only implicitly, that the simultaneous design of
the structure and the control system will definitely reap benefits that outweigh the
increased computational expense that will inevitably follow. On the surface, this
would seem a reasonable assumption, since a traditional sequential design process
may involve several iterations by both the structural design group and the control
synthesis group. However, Haftka et al. [Haf-1] found that, specifically in his case for
the integrated thermal/structural design problem, integrating ncrmally independent

design methodologics does not always justify the effort and expense involved.




Therefore, to investigate the possible benefits of an integrated structure/control
design approach, Haltka et al. [Haf-3] consider small changes in the structural pa-
rameters. They find that significant enhancements in the control can be obtained by
these small changes. That is, small structural modifications can result in large control
effort reductions to meet the same vibration control requirements. This result, and
other recent studies also demonstrating synergistic effects of an integrated design (for

example, [Kho-1,Sal,Mes]), are seen as a justification for further investigation into

the problem.

Using a conventional design approach for a controlled structure, one would first
optimize the structure alone, then design a control system for this baseline structure.
This process may then be iterated until both the structure and control system meet
necessary constraints and objectives. The structure may have constraints such as a
maximum total mass and minimum open-loop frequencies and spacings, stress and/or
displacement constraints under various loading conditions, and perhaps even speci-
fied open-loop mode shapes. The control system constraints may include closed-loop
damping and frequency, frequency spacing, total available control energy, and maxi-
mum output response constraints. In this conventional approach then, the structure
would be designed to minimize the total mass subject to open-loop structural con-
straints, and the controller would then be designed in some optimal fashion, perhaps
as an linear quadratic gaussian (LQG) regulator, subject to the closed-loop con-

straints. The objective to be minimized in the control design would be a quadratic

form of the type

/Ooo {mTA:c + uTBu} dt or FE [:cTA:c + uTBu] (1.1)

Therefore, a “classical” approach to the simultaneous structure/control optimiza-
tion would be to simultaneousl® minimize the weighted sum of the total mass and the

above quadratic form, subject to all of the structural and control constraints. That

is, define the objective as

J(p) = a,W(p) + a, /0 " {27 A(p)e + uT B(p)u} di (1.2)

There are a number of authors who formulate the integrated control/structure




design optimization using this “classical” approach. Salama, Hamidi and Demsetz
[Sal], Messac, Turner and Soosaar {Mes], Miller and Shim [Mil-1] and Onoda and
Haftka [Ono) are members of this group. In addition, these authors simplify the
problem by considering that, for any fixed parameter vector p, the optimal constant

gain control is given by the well known Linear Quadratic Regulator (LQR) solution.

Then, equation (1.2) reduces to

J(p) = aiW(p) + azz”(p) Py (P)z(P) (1.3)

where P, is the steady-state solution to the appropriate Riccati matrix equation.
This significantly reduces the dimension of p since the control gains are no longer

included in the optimization, and can result in a significant computational savings.

Hale, Lisowski and Dahl [Hal-2] also define an objective function of the form of
(1.3), and augment it with functions of auxiliary coordinates, Lagrange multipliers
and adjoint displacements. Necessary conditions for an optimal control at fixed p,
along with necessary conditions for an optimal p, can then be derived by the calculus

of variations. The resulting coupled nonlinear equations must be solved numerically

due to their general complexity.

As noted by Hale and Lisowski [Hal-3], one of the major problems in assuming a
quadratic controller penalty function ot the form of (1.1) is the difficulty in assigning
a meaningful relative penalty on the deflection vs. the penalty on the control energy.
This same problem exists in the separate optimal control problem, but is exacerbated
in the integrated design problem since the structural parameters are varied. Addition-
ally, we must also assign a relative weight to the structural mass part of the combined
ohjective (1.2) vs. the control part of (1.2), i.e. we must assign values to a; and a; in
equation (1.2). The optimal design so calculated will be very sensitive to the values
of these weighting parameters, but present methods rely more on artwork to choose
these weights than on any formalized algorithm. One way to avoid choosing these
weights would be to extremize only one part of the joint objective function (1.2), and

include the effects of the other part explicitly into the constraints.




In [Hal-3], the authors use the total maneuver control cost as the objective to be
minimized, subject to initial and final displacement and velocity constraints (maneu-
ver constraints). Khot, Eastep and Venkayya [Kho-1}, Khot [Kho-2], Navid [Nav] and
Manning and Schmit [Man] all consider the problem of integrated control/structure
design as a mass minimization subject to constraints on the closed-loop system re-
sponse (displacement and/or eigenvalue constraints). While the control cost can easily
be a function of structural parameters through the system matrices, it is usually as-
sumed that the total mass is not a function of controller parameters (i.e. neglecting
the mass of the actuators and their energy source). Therefore, when considering a
minimum mass design, it is the interaction with the constraints on the closed-loop

system that provides the simultaneous design.

Bodden and Junkins [Bod] seek to minimize the norm of a vector of output feed-
back gain matrix elements to “herd” the closed-loop eigenvalues into an acceptable
region of the complex plane. In this sense, the norm of this vector was taken as a
measure of the control effort. In [Jun], Junkins and Rew extend the ideas presented
in [Bod] to cases where the controller is designed as a classical LQG regulator. Here,
the elements of the weight matrices in the quadratic performance index are included

in the parameter vector p, and the authors show that not all weight matrices are

created equal.

Haftka, et al. [Haf-3,Haf-2] choose a similar objective function, in this case the
sum of the gains of the actuators. Since in their case the actuators act as viscous
dashpots attached to a flexible bar, the sum of these gains gives a measure of the
total amount of damping supplied by the actuators and colocated velocity sensors.

In this sense, the sum of the gains is also a measure of control effort.

Rather than minimize the sum of the structural mass and a control performance
term, Lim and Junkins [Lim-1] instead review three measures of closed-loop stability
robustness which could be extremized. This paper is essentially a condensed version
of the Ph.D. dissertation of Lim [Lim-2]. Large flexible structures have many closely
spaced, lowly damped, low frequency modes, and since present finite element tech-

nicques will only accurately calculate the first few modes, there may be considerable




uncertainty in modal frequencies and mode shapes within the bandwidth of the con-

troller. Therefore, the closed-loop system should be as robust as possible to variations

in these parameters.

The first robustness measure is an eigenvalue sensitivity norm, which is the max-
imum singular value (L, norm) of a matrix product representing an upper bound
on the square of a weighted eigenvalue error norm for normalized perturbations p.
This measure would be minimized to give the structure stability robustness. Another
measure is the well- known condition number, which can be related to the radius of
uncertainty within which all eigenvalues are perturbed due to an error in the system
matrix. At the very least, we would like the closed-loop system to remain asymp-
totically stable in the presence of parameter uncertainties, and this corresponds to
maximizing the stability robustness. It is shown that this is equivalent to minimizing

the condition number of the closed-loop system matrix.

The third robustness measure is due to Patel and Toda [Pat], and is related to
the spectral radius of the solution of an associated Lyapunov equation. This mea-
sure should be maximized. The major problem with measures of robustness is their
conservatism. However, the authors in [Lim-1] conclude from their numerical studies
that a significant improvement in the robustness measure does indeed correspond to

a significant improvement in the actual stability robustness of the closed-loop system.

Adamian [Ada] chooses another measure of robustness, and formulates the prob-
lem as a minimization of a composite objective function which is a linear combination
of the structural weight and the robustness measure. In his work, the sensitivity of
the closed-loop cigenvalues with respect to plant uncertainties is taken as the measure

of robustness. Closed-loop eigenvalue constraints are also included.

Gustafson, et al. [Gus] set the problem up in a unique fashion. They have de-
veloped a method to obtain equivalent continuum models for truss type structures
with a pattern of repeating elements. From this equivalent continuum model (dis-
crete modelling is used for rigid components of the structure), PDE’s are obtained

and solved in the frequency domain so that explicit dependence on structural param-




eters is achieved. The solution is in distributed form, which thus retains all modal
information available in the PDE. The sets of structural and control parameters can

be combined into a single optimization problem - the simultaneous control/structure

design problem.

Hale [Hal-4], proposes an approach to the simultaneous synthesis for vibration sup-
pression using the set theoretic analysis method for linear dynamic systems. First,
external disturbances are assumed to be unknown but bounded time-varying pro-
cesses. Second, inequality constraints on outputs (measurements) and inputs (con-
trols) are included explicitly. The purpose of the integrated synthesis is to maximise

the amplitude bound on the unknown disturbances while explicitly satisfying input

and output constraints.

A similar approach is taken by Slater [Sla], in that no explicit relative weight
between the structural parameters and the control terms is required. Rather, the
control is viewed as complementing the effect of the structure in reducing deformations
due to an applied stochastic disturbance model. The formulations by Manning and
Schmit [Man] and Lust [Lust] are similar except that the excitation forces are assumed
deterministic and known, and are explicitly harmonic in the case of Lust. Thus, in
all members of this last group, real physical constraints drive the solution rather than

the vague quadratic penalties in a cost functional.

One thing to keep in mind concerning the preceeding discussion is that the choice
of objective to be extremized will usually be highly mission dependent. The problem

formulation will always involve some element of engineering judgement.

1.2.2 Problem Solution

Once the problem has been formulated as a nonlinear programming problem, their
solution presents a challenge. There is a critical need for a dependable optimization
tool that efficiently handles a large number of nonlinear inequality constraints and
a very high dimensional design space. In the literature, many numerical solution

approaches are presented, almost all of which are gradient based. All solution tech-




niques are iterative due to the nonlinearity of the problems to be solved, and may only
converge to local minima due to the fact that the objective function will usually not
be globally convex. In fact, this problem of convergence to local minima is inherent

to gradient based approaches, and generally cannot be avoided.

The gradients of the objective and constraint functions with respect to the design
parameters will be required. For highly nonlinear and large dimensionality problems,
numerically evaluating these gradients using finite differencing can be computationally
expensive, and the gradients may include a significant error over their analytically
evaluated counterparts. Such errors may halt the solution algorithm prematurely.
Therefore, if at all possible, efficient analytical expressions for the gradients should
be derived. Even so, convergence rates may be slow, hence numerical solutions for

even relatively simple structures may still be computationally expensive.

For algebraic optimization, where there are no differential type constraints, there
are many commercially available nonlinear programming codes that can be used to
solve general nonlinear constrained optimization problems. Haftka, et al. [Haf-3,
Haf-2] used NEWSUMT {[Miu], which employs an extended interior penalty function
formulation using Newton’s method with approximate second derivatives for each
constrained minimization. NEWSUMT-A [Gra-1] was developed from NEWSUMT

by adding constraint approximations and a move-limit strategy, and is used by Onoda
and Haftka [Ono].

The VMCON optimization subroutine [Cra], which is based on Powell’s algorithm
for nonlinear constraints that uses Lagrangian functions, was used by Khot, Eastep
and Venkayya [Kho-1] and Khot [Kho-2]. Gustafson, et al. [Gus] used the IMSL
subroutine ZXSSQ [IMSL]. This subroutine finds the least-squares solution based on
a modification of the Levenberg- Marquardt algorithm which eliminates the need for
explicit derivatives. This is a special case because the example considered in [Gus] had

no constraints. ZXSSQ can not be used for the solution of constrained optimization

problems.

Manning and Schmit [Man] used the subroutine CONMIN [Van-1] to solve an ap-




proximate problem that is derived from the nonlinear optimization problem. CON-
MIN was also used by Lust [Lust] and Navid [Nav] to solve their sequences of approx-
imate problems. A mathematical programming program that includes CONMIN, as
well as a variety of other optimizing algorithm options, is ADS [Van-3]). This was
used by Adamian [Ada] to directly solve his optimization problem. Both CONMIN
and ADS are public domain codes, widely used because of their generality and ease

of application.

Salama, Hamidi and Demsetz [Sal] propose an iterative solution, based on a modi-
fied Newton-Raphson scheme, of the appropriate Kuhn-Tucker optimality conditions.
However, this solution requires the calculation of the second derivatives of the objec-
tive function with respect to the design variables. For high order systems especially,
evaluating these second derivatives becomes very costly. In order to avoid this ex-
pense, Miller and Shim [Mil-1] explore the use of the method of steepest descent
to minimize the objective. If no constraints are active, this method is the same as
the gradient projection method mentioned above. When constraints are active, the
objective is augmented by these active constraints using Lagrangian multipliers, and

this augmented objective is then minimized by steepest descent as before.

Rather than solving the full nonlinear programming problem, some authors prefer
to work with linearized versions of the full nonlinear equations. In this sort of iterative
algorithm, move limits must be placed on the design variables in order that the local
linearity be satisfied. Bodden and Junkins {Bod] and Junkins and Rew [Jun] linearize
the objective and constraint functions about the current value of the design variables.
The initial design point is taken as the output of a typical sequential design process.
The authors adopt a “minimum modification” strategy, whereby from the infinity of
possible solutions to a small number of equations (linearized objective and constraints)
in a large number of unknowns (elements of the design variable vector), the solution is
chosen that minimizes the changes in the design variables while achieving the desired

changes in the objective and constraints.

The numerical proceedure used here is equivalent to a gradient projection con-

strained optimization algorithm. Convergence of the iterative algorithm can be en-




hanced by employing a continuation proceedure, whereby a new parameter is intro-
duced to allow the creation of “stepping stone” problems that are arbitrarily close to
the converged ncighbouring solutiors [Bod,Hor|. The continuation approach allows
one to almost arbitrarily satisfy the local linearity requirements by choosing a small
enough step in the continuation parameter. It also allows, for example, restrictive

constraints to be applied gradually from less restrictive ones.

Lim and Junkins [Lim-1] propose an approach to the solution of nonlinear pro-
gramming problems involving sequential linear programming. Here, the nonlinear
problem is transformed into the standard linear programming problem by lineariza-
tion, a translational transformation of the design parameters, and by adding slack
and/or surplus variables. Once in this standard linear format, the problem formula-

tion is straightforward, and very efficient and reliable linear programming software is

available for its solution.

Hale [Hal-4] introduces the use of set-theoretic methods for the solution of in-
tegrated structure/control synthesis problems. Due to the author’s unique problem
formulation mentioned earlier, the constraints on the output and control terms are
box-type constraints, which can be approximated (conservatively) as ellipsoidal sets.
Set-theoretic methods can then be applied to maximize the magnitude of the dis-
turbances such that the ellipsoidal set constraints are not violated. However, the
author acknowledges that the computational burden of a numerical solution using
this method is very high. This would prohibit solving problems of actual structures,

with a large number of states and/or design parameters, using this method.

For problems with differential or integral constraints, a calculus of variations ap-
proach to the problem solution yields, through the Fundamental Theorem, the neces-
sary conditions to be satisfied by an extremal [Kir-1]. These necessary conditions are
the Euler equations, and in general are nonlinear two- point boundary value differen-
tial equations. Generally, these problems will be much more difficult to solve than a
corresponding algebraic optimization problem. In fact, solving these equations in an

iterative framework can become prohibitively expensive [Hal-2].
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One method of solving the two-point boundary value problems, that uses a pro-
jected gradient iterative method, is given in [Hal-2]. Similar techniques are also used
by Messac, Turner and Soosaar [Mes] and by Hale and Lisowski [Hal-3] for solution
of their integrated design problem formulation. Basically, the iterations proceed in
the negative direction of the gradient of the objective (direction of greatest decrease
of objective) until a constraint is met. At this point, the gradient vector is projected
onto the constraint, and this becomes the direction of motion for that iteration. The

comment is made however, that these algorithms are not'yet efficient enough to tackle

large problems [Hal-3].

1.3 Scope of the Present Work

The work contained in this report is intended to extend the work of Slater [Sla], in
which a preliminary study of control/structure optimization was performed. Here,
the optimization will be based on the dynamic response of a structure to an external
disturbance environment, and as such will differ from most previous work. Such a
response to excitation approach is common to both the structural and control design
phases, and hence represents a more natural control/structure optimization strategy
than relying on the artificial and vague control penalties used by other authors. The
disturbances are to be considered unknown and stochastic, and can therefore model a
wide variety of actual disturbance states. The design objective is to find the structure
and controller of minimum mass such that all the prescribed constraints are satisfied.
The controller interaction will be inserted by the imposition of appropriate closed-loop

constraints, such as closed-loop output response and control effort constraints.
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Chapter 2

The Integrated Control/Structure
Optimization Problem

2.1 Introduction

In this chapter, the integrated control/structure design optimization problem is for-
mulated as a general nonlinear constrained mathematical programming problem. This
problem formulation is quite general with respect to thc constraints that can be ap-
plied and the controller methodology that can be employed. In this work, only the
special case of full state feedback control will be considered. This enables the problem
to be partially solved analytically, and substantially reduces the dimensionality of the
numerical problem to be solved. In future work, more realistic and/or sophisticated

controller methodologies will be considered.

2.2 General Problem Formulation

The integrated control/structure design optimization problem can be stated as fol-
lows: find the vector of structural and controller parameters that minimizes the mass
of the structure subject to limitations on the available control energy, and a set of
allowable output responses to a set of prescribed stochastic disturbances. Mathe-

matically, this can be written in the form of a nonlinear mathematical programming

problem as

12




where

Q™ e & 8
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gCCl

Minimize, with respect to p, the weight

J(p)

subject to:

gi(P) <0 forj=1,...,m

t=Fr+Gu+G,w

TR
gcc.-=2[y—'ﬂ};'—u'l—1_<_0 fori=1,...
EfyT Wiy, |
goc.-=—M'az—y4J—1so fori=1,

1

Yy, = Hyz fori=1,...,n,

Ppe<p<p,

is an N-vector of design variables,

is an n-vector of state variables,
is an ny-vector of control forces,

is an n,-vector of stochastic disturbances,

locations and orientations of the actuators,

is the i** control effort constraint cost function,
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is the j** element of g, an m-vector of structural constraints,

is the (n X n) matrix containing the system dynamics,

is the (n % n,) matrix containing information on the

is the (n x n,) matrix containing information on the points

of application and orientation of the disturbances,

is that n,,-order partition of u representing the control

(2.1)




forces involved in g,

Bi is the maximum allowable value of the i** expected control

effort function E[uf Ryu;),

R; is an (n,, x n,,) control force weighting matrix,
Joc, is the 7** output response constraint cost function,
a; is the maximum allowable value of the i** expected output

response function E[y] Wiy, ],

W; is an (ng4, X ng,) output response weighting matrix,
Yq, is the i** design output ny-vector,
Hyg, is an (ng, X n) matrix giving the relationship between

the state variables and y,,
Pe is an N-vector of minimum design variable values, and

P. is an N-vector of maximum design variable values.

The side constraints are the strict bounds p, and p, on the design variables, and
are vector inequalities that are imposed element by element. These design variable
bounds are not included explicitly as constraints in the problem formulation. Note
that the structural weight and the structural constraints g will in general not be
functions of the controller design variables unless the controller mass is included in
the design. Note also that g., is a weighted mean square control effort, and g, is
a weighted mean square output response. Multiple output response constraints are
allowed, although only one of these will in general be active at the optimum design.

However, all of the control effort constraints will generally be active at the optimum

design.

The disturbances acting on the structure, represented by w, can conceivably be
in any form one desires. However, it is assumed in this work that w is a stochastic
disturbance, specifically zero mean Gaussian white noise with covariance X,,. The
structure will respond to this disturbance with some transient behaviour, in addition
to a steady-state response. It seems reasonable to optimize the structure for the
steady-state response to the disturbance rather than the transient response because

the transient behaviour will normally be of secondary importance to the response ob-
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jectives (such as long term pointing accuracy). Also, for steady state optimization, the
differential equation constraint (state equation) can be replaced with a steady state
covariance equation, and the mean square control effort and output response con-
straints may be recast in terms of this covariance. Therefore the two-point boundary

value problem is eliminated and the numerical solution of the problem is significantly
simplified.

The particular form of this covariance equation will depend on the form of the
controller used, and will be derived for each controller methodology as they are pre-

sented. Each covariance equation will be of the general form

FuX+XFYI+Q=0 (

o
o
S

where F,; is the closed-loop dynamical system matrix, X is the symmetric positive

definite covariance matrix, and @ is a symmetric positive definite or semi-definite

matrix.

To obtain the first-order necessary conditions for optimality, first form the aug-

mented objective function J, as

Jo = J(p)+tr [Ad(FuX + XFT + Q) + 3 M, 9ec, (P) +
j=1

+ 50,00, (P) + 3 mi05(p)  (2.3)
j=1

=1

Then the IKuhn-Tucker necessary conditions for a constrained minimumn state that,

at the optimum design, the following conditions must be satisfied [Van-2}:

>0 if pi =py,
%_(_7_’2 =0 if p,, <p: <p,, fore=1,...,N (2.4)
Di
<0 ifpizpu.
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Au,gcc, (p) =
Ay) goc} (p) =
#igi(p) =

9;(p) <0
Goc, <0

gCCJ S 0

fori=1,...,ng4

fori=1,...,n4

fory=1,...,m

0 forj=1,...,n4
0 foryj=1,...,n,
0 forj=1,...,m

forj=1....,m
fory=1,...,n,

forj=1,...,np

Pp<p<p,

—
o
(1]

~

(2.6)

In equations (2.4) - ( 2.8) above, A; is the matrix of Lagrange multipliers corre-

sponding to the covariance equality constraint equation (2.2), and Ay, Ay and p are

the vectors of the Lagrange multipliers corresponding to the inequality constraints of

equations (2.2). Since the covariance Lyapunov equation (2.2) is symmetric, we can

assume that A; is symmetric also.

Equations (2.4) indicate that, at the optimum design, the gradient of the objective

function augmented with the constraints via Lagrange multipliers must vanish for

those variables not at their side constraints. This derivative can be written a.

dJ.(p) aﬂp)

o = om apt[A(.Fc,X+XF,+Q]+ij\.‘,
2 aOC = .
+§:ij Zee, D) Z Jag,. fori=1,...,
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These gradients are taken with respect tc all structural and controller design
parameters. Equations (2.6) indicate that the Lagrange multipliers must be non-
negative at the optimum design. For those inequality constraints not active at the
optimum, equations (2.7) indicate that the corresponding Lagrange multiplicrs must
be zero. This is because non-active inequality constraints should take no part in the

final design. Finally, and obviously, the optimum design should satisfy all constraints,

as indicated by equations (2.8).

Now, consider how the general formulation as presented is affected by the partic-

ular choice of controller methodology. The controller constraints take on particular

functional forms, as does the covariance equation.

2.3 Full State Feedback Control

The simplest form of feedback control is to feedback the entire state vector, as in

u=-Kz (2.9)

where K is the (n, x n) state feedback gain matrix. The controller design variables
for this case will be the n,n elements of K. A block diagram giving the structure of
this controller is given in Figure 2.1. Substituting this control into the state equation,
and assuming that the disturbance w is zero mean Gaussian white noise, the state

covariance matrix X for this case can be found from the Lyapunov equation

FuX + XF} +G,X,GT =0 (2.10)

where Fy = (F — GK) is the stable closed-loop dynamical matrix for the full state
feedback case, X = E[zx7”] is the (n x n) symmetric state covariance matrix, and

X, = E[wwT] is the (n, x n,) symmetric covariance matrix for the stochastic dis-

turbances.

Expressions for the controller constraints in terms of this covariance matrix can

then be obtained as
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tr[ KT R K; X]

Jec, = 5 1 fore=1,...,ns (2.11)
te[HT W, Hy X
e, = NI ) porim1 i, (212
a.

where K is the (n,, x n) partition of K corresponding to u;. It is assumed that the

u; are independent, and that u is ordered as

u,
u,;
u= (2.13)
Un,
Note that 32, n,, = n,, and that the columns of G can be interchanged to force

condition (2.13) to be satisfied. The elements of the feedback gain matrix K, along
with the elements of the covariance matrix X, are the independent controller design
variables in the augmented Lagrangian approach. The introduction of the Lagrange
multipliers means that all variables are to be considered independent, even though X

appears dependent on a particular choice of K through equation (2.10).

Consider equations (2.8) when the gradients are taken with respect to the elements
of the gain matrix K. To simplify notation, consider a matrix A with elements a;;,

and define for scalar s the matrix &2 by

ds Os
gl L (2.14)
{OA] ij 6a.~,~

Using this notation, the Kuhn-Tucker equations for differentials with respect to K

can be written

5% [tr (AA(F - GK)X + X(F - GK)T])] +

o [ tr[ KT R K, X B
5K [Z Au, (—_ﬂ3 - 1)} =0 (2.15)

=1




Let R be an (n, X n,) matrix defined in a block diagonal sense as

R = diag {(%“;) R.-} (2.16)

then equation (2.15) can be rewritten as (since A, is not a function of K)

b_aﬁ [tr (Al(F - GK)X + X(F - GK)T]) + tr[ KT RKX]| =0 (2.17)

Using the differentiation rules for the trace operator given in Appendix A, equa-
tion (2.17) becomes

—2GTA. X +2RKX =0 (2.18)

which, since X is non-singular, and if A,; # 0 for all ¢, reduces to

K = R'GTA, (2.19)

When the gradients are taken with respect to the elements of X, equations (2.8)

become

7] A KTR K. X
3% [tr (A,[(F -GK)X + X(F - GK)T]) + g/\,ﬁ (9—[—3}%——] - 1)] +

. 0 Da tr[ﬁVV;Hd‘X] _
N

i=1 1

o
(3]
(o)
~—

Equation (2.20), along with the definition of KX in equation (2.19) and that of R in
equation (2.16), gives

FTA. 4+ A,F —= A,GR'GTA, + W =0, (2.21)
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where

[S)
[SV]
o
~—

Na /\ '
W=y (;ﬁz—) H]W:Hy, (2.

i=1

which is an algebraic Riccati equation. Equations (2.19) and (2.21) define the solution

to the optimal control problem

min J, = /:O [a:TW:c + uTRu] dt (2.23)

where K is the optimal steady-state gain matrix, and A; is the steady-state solu-
tion to the associated Riccati equation. Sufficient conditions for the existance of a
steady-state Riccati equation solution and stability of the control law given by equa-
tion (2.19), is that the system be completely controllable and detectable. Detectability
indicates that all unstable modes are observable. If these mildly restrictive conditions

are met, the closed-loop system F is guaranteed to be asymptotically stable.

Therefore, at the optimum design, where the Kuhn-Tucker optimality necessary
conditions for a minimum will be satisfied, the control design variables will be the
solution of the linear quadratic regulator (LQR) problem equation (2.23). Although
this LQR property only holds true at the optimum point, it will be assumed that
at every point in the design cycle, the control design variables will be found as the
solution to the optimal control problem (2.23). Therefore, the numerical optimization
problem can be reduced to optimization over just the structural design variables, along
with an optimal control problem solution which will be a function of the Lagrange
multipliers A, and A,. The immediate benefit of this is a reduced dimensionality
nonlinear programming problem. In addition since under the conditions stated above,
the regulator solutions always give a stable closed-loop system, no explicit check must

be performed on the system stability during the solution procedure.
In order to considerably improve the conditioning of the optimization problem,

normalize the objective function by its initial value — the initial weight of the struc-

ture Wy [Van-2]. If the structural constraints as given in g are normalized, and
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since the controller constraint functions have been written in normalized form, the

optimization objective and constraint functions will then all be of order one.

Finally then for this case, if p® is the vector partition of p representing the struc-

tural design variables only, the integrated full state feedback control/structure design

optimization problem can be stated as follows:

- Minimize, with respect to p°, the normalized weight

1
wl(P°)
subject to:

gi(P’) <0 forj=1,...,m

TR.K.
ga‘=ﬂ{‘-—ﬂ}—:’;—1{'—x]-—l_<_0 fori=1,...,ng
T : .
Goo; = “[H""Z?H"X] ~1<0 fori=1,...,nq (2.24)

t

FuX + XFT + G, X,GL =0

K = R'GTA,

) FTA, + A.F = A,GR'GTA, + W =0

PpeSp=<p,
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Figure 2.1: Full State Feedback Block Diagram
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Chapter 3

Numerical Solution Technique

3.1 Introduction

In the general problem formulation presented in Chapter 2, the constraint functions
are generally highly nonlinear implicit functions of the design variables. Solution of
this problem could be attempted by the direct application of nonlinear programming
techniques; that is, using the exact functional expressions for the constraints. How-
ever, this approach quickly becomes computationally very expensive as the dimen-
sionality increases since the full ok jective and constraint functions must be evaluated
at every step, and their respective gradients at most, if not all, steps thoughout the

design procedure. Such evaluations tend to be computationally very expensive.

Approximation techniques, where the implicit nonlinear problem is replaced by
a sequence of explicit approximate (although not necessarily linear) problems, have
been shown to yield efficient and powerful algorithms for structural design optimiza-
tion (see, for example, [Sch,Gra-2]). It has yet to be shown however, that the se-
quential approximations technique can be applied successfully to the integrated con-
trol/structure design optimization problem. Difficulties arise because in general, the
control constraint functions tend to be much more complex, implicit nonlinear func-
tions of the design variables than do the purely structural constraint functions. This
means that to use approximation techniques in the integrated control/structure op-
timization, either much smaller steps in the design space will be required, or a more

sophisticated approximation scheme must be implemented.
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3.2 Solution Algorithm

In this method, the fully constrained nonlinear optimization problem is solved by the
iterative construction and numerical solution of a sequence of explicit approximate
problems. The approximate problems are basically first-order Taylor’s series expan-
sions (in some convenient intermediate variables), of the objective and constraint
functions. The numerical solution is accomplished using the method of feasible di-
rections as implemented in the mathematical programming code ADS [Kir-1]. We
still solve the approximate problems using a nonlinear programming code because,
depending on the intermediate variables chosen, the approximate functions may still

be nonlinear functions of the design variables.

A schematic of the solution algorithm is shown in Figure 3.1. The solution process
begins with some initial structure, which is analyzed using the finite element tech-
nique. At this point, the gradients of the active constraint set are evaluated, and the
approximate problem is formed, with respect to the current design. Expressions for
the gradients of all constraints considered can be evaluated analytically. The gradi-
ents for constraints common to all controller types, along with those introduced for

specific controller methodologies, are derived in a later section.

The approximate problem is solved with ADS using an active constraint set strat-
egy to reduce the dimensionality of the approximate problem by deleting the inactive
constraints. Move-limits on the design variables are imposed during the solution to
ensure that the design remains within the region for which the approximation func-
tions are of acceptable quality. The choice of move-limits and how they change can
have a significant effect on convergence, and will often be determined from numerical

experience with the particular problem at hand.

After the solution of the approximate problem, the structure and its control system
are deemed optimal if a convergence test on either the absolute or relative objective
function change over a specified number of successive global iterations is satisfied.
Otherwise, the objective and active constraint gradients are evaluated for the new

design, a new approximate problem formed, and the process above is repeated in an
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iterative manner. The solution procedure ends when the design variables converge,

or when the number of iterations exceeds some preset maximum.

Scaling the structure and controller to the closest constraint surface is possible in
the case discussed in this work, because of the special assumed form of the controller.
This scaling is performed on the initial system, and on the system immediately fol-
lowing the solution to the approximate problem. The scaling procedure is discussed
in a later section. The solution procedure outlined above has been implemented in
a research computer program CSOPT, written in FORTRAN, and run on a CRAY-

XMP computer. The following sections outline each of the major components of the

solution algorithm in more detail.

3.3 Scaling to the Structural Constraints

The structural constraints will generally be confined to constraints on static member
stresses or nodal displacements for specified loading conditions, and/or to constraints
on the open-loop structural frequencies. Scaling the entire structure to any one of

these constraints is generally rather straightforward for the finite elements considered

in this work.

The design variables for a truss/membrane/shear element type structure are the
clemental cross-sectional areas/thicknesses. Then for a statically determinate struc-
ture, the design variables are inversely proportional to the static displacements and
stresses. For indeterminate structures, this inverse proportionality is not exact, but is
still a good approximation. In these cases, it will be necessary to perform the inverse
scaling in an iterative procedure, but only a few iterations may be required to achieve

the exact scaling desired, depending on the accuracy required.

Equal scaling of all the structural design variables will only affect the open-loop
frequencies if the structure includes some nonstructural mass. Consider the Rayleigh
quotient expression for an open-loop frequency \; = w? for a conservative, non-

gyroscopic system, as
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_ PTK,e,
B ¢.‘T[Ms + M),

i (3.1)
where ¢, is the mode shape associated with \;, and M, and M, are the mass matrices
associated with the structural and nonstructural mass respectively. If the stiffness
and structural mass matrices are linear functions of the design variables (true for

truss, membrane and shear elements), then to obtain the desired open-loop frequency

A4, consider scaling all design variables by the same scale factor s;, to get

2\ = 597 K.,
YT [siM, + M),

(3.2)

Note that the nonstructural mass matrix is not scaled. If the ratio of actual

open-loop frequency to desired open-loop frequency is

h; =

K| 2>

(3.3)

the scaling s; necessary to obtain this ratio can be obtained by substituting equa-

tions (3.1) and (3.2) into equation (3.3), and solving for the scaling parameter s;, to

get

- ¢?1We¢i
&7 [hi( M, + M) — M,);

3

(3.4)

One scaling parameter s; for each frequency constraint will be obtained, and the

scaling parameter of the most violated constraint would be used to scale the system.

3.4 Forming the Approximate Problem

Since the objective is linear in the design variables (when restricted to truss, mem-
brane and/or shear finite elements), the objective gradient is constant over the entire
design process and the objective function can be evaluated exactly for any inter-
mediate design. Therefore the objective function need not be approximated at all.

Approximation functions will be formed for both the structural and control constraint
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functions. The two most common types of approximation in use are the inverse de-
sign variable approximation (see [Can] for example) and the hybrid design variable

approximation [Sta], which are both first-order Taylor’s series expansions in some

convenient intermediate design variable.

3.4.1 Inverse Design Variable Approximation

In this approximation the constraint function is expanded as a first-order Taylor’s
series expansion in variables that are the inverse of the design variables. As noted
in a previous section, this approxima?ion is exact for static structural constraints on
a determinate structure, and this is the motivation for such a choice of intermediate
variables for the structural design variables. Numerical experience gained in the

current work has shown that this approximation also works quite well on the controller

constraints in some cases.

A generic constraint approximation function written in terms of the intermediate

design variables is then

N . :
(v) = 9iwo) + 3 % (%5 — v) (3.5)

0

where the y; = p— are the (mtermedlate) inverse design variables. The constraint gra-

dients are obtained with respect to the direct design variables p, hence equation (3.5),

written in terms of the p;, becomes

ag;

3i(p) = gi(po) Zp,o B,
J

i=1

1 1
(z'a) (38)

[}
Note that these approximation functions are nonlinear in the design variables p;.

The gradients of these approximation functions can be found by differentiating

equation (3.6) with respect to the direct design variables p;, to get
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05i(p) _ g; (z’__) (3.7)

dp; — Op; p, \Pi
0

Note that this gradient is not constant, but depends on the current design variable.

3.4.2 Hybrid Design Variable Approximation

The use of approximation functions is motivated by the desire to obtain a low-order
approximation that best approximates the actual constraint behaviour and that leads
to the least constraint violation possible. The inverse design variable formulation in-

troduced above is a simple, low-order approximation that does a good job of approxi-

mating the constraint functions, especially for the structural constraints. However, it
is not the most conservative approximation that could be obtained using first-order
expansions, where the “most conservative” means the most positive for constraints of

the type g(p) <0 and the most negative for constraints of the g(p) > 0.

The hybrid design variable approximation obtains the most conservative possible
approximation by combining the features of the inverse design variable approxima-
tion as presented above, and of a direct design variable approximation, where the
expansion is performed with respect to the direct design variables [Sta]. Consider
approximating the constraint function using the first two terms in the Taylor’s series

expansion that is linear in the direct design variables, tc zet

N

3.(P)=9(po) + X

i=t

(P; — Pj) (3.8)
Po

99
Op;j

or by an expansion that is linear in the inverse design variables y;, as defined in the

previous section, as

(Y5 = Y5) (3.9)

Nag
9, () = 9(%o) + 2_ 5
(9) = olue) + 5

]

Since our gradient information is with respect to the direct design variables p;, g,
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must be written as

i 2()_1,
4,(p) = g(py) le o,

(L - -1—) (3.10)
D; Djo

D,
A criterion for determining the most conservative approximation fron: equation (3.8)

and (3.10) is obtained [Sta] by subtracting equation (3.10) from (3.8), to get

~ - N 1 ag 2
5:(P) -9.(P) =-2 5| (p—Pi) (3.11)
j=1 Pi OP; P,

Since the constraint equations used in the problem formulation are expressed as

g(x) <0, it can be seen, with reference to equation (3.11), that g, is more conservative

(greater) than g, when

lag

<0 3.12
72 3p; (3.12)

Y 23

and g, is more conservative (greater) than g, when

lag

>0 3.13
P; ap] ( )

P

The hybrid approximation formulation is motivated by the desire to obtain an
approximation that best predicts the actual function behaviour without violating the

constraint. Then let the hybrid approximation be given by

N
b
3u(P) = 9(P) + 2_ A '_a;f- (3.14)
7P,

where
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( .. 1 dg
.~ D it ~29) 5o
(pJ pJ ) Pj ap] po
A= (3.15)
Pija . 1 ag
Pio ) (p—p:) if —| <o
L (PJ' ) (p; = Pi) p; Op; -

With this hybrid approximation, a given constraint function may have a linear ap-
proximation with respect to one variable, and an inverse approximation with respect
to another variable, hence the term “hybrid”. If the p; are physical design variables

such as areas, they are restricted to be positive, and the term 1/p; can be discarded

from the conditions in equations (3.15).

If some of the p; are non-physical design variables which are unrestricted in sign,
they could become close to or equal to zero at some stage in the design process. In
such a situation, an inverse design variables approximation becomes non-sensical, and
the direct design variables approximation should be used. Accordingly, the general

hybrid approximation definition for A, in equation (3.15) should be modified to

( .. 18
(P; — Ps) if __ag' >0 or |pj<A
Pi9Pilp,
.AJ'=< (316)
i .. 10
(”—) (p; = o) if =5~ <0
{ Pj Pj PJp
(/]

where A is a “small’ number specified by the user.

The gradients of the hybrid approximation function can be found by differentiating
equation (3.14) with respect to the direct design variables p;, to get

(99 if 19 >0 or |pjl<A
) opily, P; 9pil,,
aga,,(p) _ ﬂ (3.17)
i 2
pJ (pﬂ) @_ lf L.iq_ < 0
| \p;/ Op; P, p; Op; P,




3.5 Move-limits

Move-limits are imposed on the design variables during each approximate problem
“solution. This is done in an attempt to restrain the design variables to a region in
which the explicit function approximations remain reasonably accurate. However,
deciding how to impose these move-limits is a non-trivial task. The local curvature of
the design space (i.e. how nonlinear ar> the actual constraint surfaces in the region
about the expansion point of the approximations) will determine the move-limits, with
more strict move-limits applied in regions of high curvature, and less strict move-limits
imposed in regions of low curvature. Since second-derivative information is required to
estimate curvatures, and since such evaluations are very expensive computationally,
imposing move-limits is usually reduced to an art based on past experience. It is
possible to obtain the second derivatives using only first derivative information, and
optimization algorithms that do this are termed quasi-Newton methods. However,

these methods typically take NV iterations to fill the Hessian, and can be very costly
if N is large.

For the purpose of this work, a move-limits factor v is imposed in an exponential
form. If the current design variable and approximation expansion vector is p,, then

the upper and lower bounds on the design variables for the current approximate

problem are defined as

pu = 7p0
(3.18)

1l
2=
o~

o

D,

where v > 1. The limits specified in equation (3.18) must be imposed element by
element. Note that since the design variables in this example will be structural design
variables only, they are restricted to be positive. Obviously, equation (3.18) must be
modified if the design variables can be negative. The exponential form of the move-
limit factor is defined by the particular choice of 4, and Ypqz, as shown in Figure 3.2.

The move limits get more restrictive as the optimization progresses, and as the design
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supposedly gets closer to its optimum point. Since the initial design may be very far
from the optimum point, allowing large moves in the first few iterations enables the

design to jump around the design space somewhat during the initial stages of the

design process.

Initially, with + large, the design is more likely to be trapped in regions of a deep
local minima “well”, and is more likely to escape from shallow local minima wells.
As the move-limits become more restrictive, i.e. as v — 1, the design will become
trapped in a local minimum. This process is not unlike the process of “simulated
annealing” [Kir-2], althoug. vbviously not as general or controllable. Unfortunately,
there are no general conditions which will indicate which local minimum is the global
minimum, or where it can be found, except in cases where the design space is convex.

The design space for this problem is definitely not convex.

3.6 Scaling to the Controller Constraints in the
case of Full State Feedback Control

In the case when full state feedback is to be used, it was seen in Chapter 2 that it
is reasonable to assume that the controller at each step in the design process is an
appropriate LQR controller. In this case then, it becomes practical to scale the struc-
ture to the closest control effort constraint and closest output response constraint
simultaneously. The variables with which the structure is scaled are the structural
design variables (elemental areas or thicknesses), and the Lagrange multipliers asso-
ciated with the two controller constraints A, and A, (where for clarity, and without
loss of generality, the subscripts on the A’s that refer to the particular control effort

or output response constraints under consideration have been dropped).

Note that changing the values of A, and ), cannot independently change the values
of Ums = tr(KTRK X) and y,,, = tr(HI W H,;X), because in the LQR problem, only
the ratio of A, to A, is important. One can choose the ratio (A,/),) to satisfy one of
the control constraints — say u,,,. Then yn,, will not in general be satisfied. Suppose
Yms 15 too large (i.e. ym, > a?) at the particular point where up, is satisfied. Then

the only way one can satisfy the ym, constraint is to increase the sizes of at least some
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of the structural members.

It makes sense that one needs to change the structure to satisfy both control con-
straints. If the control constraints could be satisfied by simply choosing appropriate
controller parameters, then there would be no interaction between structural opti-
mization and controller optimization. Intuitively, it can be seen that this is not the
case. In the remainder of this section, a method is developed to scale both the ratio

(Au/Ay), and the cross-sectional areas of truss members, to exactly satisfy both mean

square control constraints.

Note that each member of the structure will be scaled by the same amount to
fulfill our goals. Obviously, this method is not absolutely mandated, and some other
approach could be used where the design variables are not scaled equally. However,
this would then be resizing rather than scaling, a process normally left to the nonlinear
programming algorithm. Assume that, at iteration i, values for (um,);, (Yms)i, the

(pj)i for j = 1,...,(number of structural members), and (A,); (or equivalently, the

ratio (A,/),);), are known. Now define

(Au)‘__'l = A (3.19)
(g’;‘)_‘l = & (3.20)
e 62
ik, (3.22)

Our final scaling aim is to set um, = 82 and y,», = a®. Therefore, let

(ums)i _

,32 = Uug (323)
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(yma)i

ol Yia (3.211)

Further, it is assumed that the mean square values (u,,.); and (yms); will change, as

a result of changes to (A,); and the (p;);, according to the equations

Ums )i a

Uiy = (—(Z—)jtl = Ai;léf’;l (3.25)
yma 1 Cs +

Yie1 = (Ums )iy (ym),)tl = A% 6% (3.26)

where a;, b;, ¢; and d; are constants.

One would first use initial (educated) guesses for a;, b;, ¢; and d; to find the
appropriate changes to (A.)o and the (p;)o required to satisfy u; = 8% and y, = o?.
The actual changes to ugp and yo due to the initial values of ag, bg, co and dy will
probably not be those predicted, and the process will have to be repeated in an
iterative fashion to obtain the desired result. However, by using the actual changes
to u; and y; at each step, updated and improved values for the constants a;, b;, c;

and d; can be estimated from the previous calculations. There are two steps to each

iteration.
(a) Evaluating A, and §, iven a;, b;, ¢; and d;
t+1 141 g

We desire, at the next step, (ums)it1 = 8% and (ym,)iz1 = @®. That is,

(Ums)is1 ai cbi -1 -

Uiyl = m = A..“(Sf“ =u_,., (3.27)

; = ——"——(ym’)”l =A% & =y 3.28)
Yi1 = ( ma)i =040% T ¥iha ( =

These prcvide 2 equations in the 2 unknowns A, and §,,,. The two unknowns can
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be found by taking logarithms of equations (3.27) and (3.28), to get

IOg(A..“) _ _di log(u,,, ,) = bi log(ym_a)

adi — b, (3.30)
log(s,,,) = —— l°g(y‘+;'i°d)‘ :Z:g("‘“"’) (3.31)

which will be valid as long as
a;d; ~ bic; # 0 (3.32)

If this condition is violated, this would indicate that the proposed changes cannot
independently scale u,,, and y,,s. However, it must be remembered that the constants
a;, bi, ¢; and d; used here are not exactly known, so the condition (3.32) may sometimes
be violated because of the particular values of the constants at that time. Numerical
experience with this solution algorithm indicates that condition (3.32) is not restictive.
If this condition does occur at some point, then the unknowns are set to their values

on the previous iteration, and the determinant is unlikely to be zero again on the

next iteration.

(b) Evaluating a;4,, biy1, ¢i41 and diyy given A, |, 6., u,, and y,,,

The only restriction on the initial values aq, by, co and dy is that as defined by
equation (3.32). However, one can obtain initial educated guesses by performing
parameter tests on the system if one so desires. After the first iteration, there is only
one back point to use, hence only two of the four parameters can be updated. In this
work, the parameters updated are ay and dy, while setting b, = by and ¢; = ¢g. We

know A, §,, u, and y,, and wish to fit 4, and d; to

u, =Ams (3.33)

y, = AP (3.34)
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Again, taking logarithms of equations (3.33) and (3.34) gives

log(u,) — bolog(é,)
log(4A,)

a, =

d — log(yl) —Cp log(Al)
! log(é,)

can be updated. Consider

— a|+l bl+1
i+1 A‘»+1 5-+1

oy = Ak

41 i+l

u, = A%+ ghin
) .

y, = ASi+1 §di+r

and solving equations (3.37) through (3.40) for the unknowns gives

o = Jo8(8)log(us,,) ~ log(8,,, ) log(u,)
" log(A,,, ) log(8,) — log(A,) log(é,,)

| =log(A,.,,,)log(u) log(A,) log(u,,, )
1 log(A,,) log(é,) — log(A,) log(6,,,)

o = Jos(é)log(y.,,) — log(é,,,) log(y.)
0 log(A,,,) log(é,) — log(4A, ) log(é.,,)

_ log(A,,,)log(y,) — log(A,) log(y,,, )
" log(A,,,) log(é,) — log(A,) log(6,,, )
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(3.35)

(3.36)

After the second iteration there are back points available, so all of the parameters

(3.37)

(3.38)

(3.39)

(3.42)

(3.43)

(3.44)

(3.45)




which will be valid as long as
log(A,,,) log(4,) — log(A,) log(é,,,) # 0 (3.46)

Once again, if this condition is violated, then the unknowns should be set to their

values on the previous iteration, and the iteration repeated.

3.7 Structural Analysis and State Space Formu-
lation

Large flexible structures are distributed parameter systems; that is, their mass, damp-
ing and stiffness characteristics are described by variables depending on time and
space. Therefore, the governing equations of motion will be partial differential equa-
tions, which are theoretically of infinite dimension. To model these structures in
a way which facilitates easy and efficient solutions to the equations of motion, the
structures are normally discretized, commonly by using the well known finite element
technique (NASTRAN for example). Discretization reduces the structure to a finite

degree of frecdom system, where the governing equations of motion will be ordinary

differential equations of finite dimension.

In this work, a finite element model of the structure is formed, and only structures
which are a collection of truss elements are considered. The problem formulation and
solution techniques employed are general however, and the extension to structures
composed of beam or plate elements should be straightforward. A truss element
allows only axial forces and displacements, and for a fixed material and geometry, the
only design parameter is the cross- sectional area. Other elements may exhibit more

design freedom. For example, a beam element may have cross-sectional area and area

moments of inertia as design parameters.

The equations of motion for the discretized structure, subject to control forces in

a disturbance environment, can be written in the form

ME+CE+ K.t = Du + G, w (3.47)
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where § is a g-vector of generalized displacements (g is the number of degrees of
frecdom in the structure), u is an n,-vector of applied control forces, w is an n,-
vector of disturbance forces, M is the system mass matrix, K, is the system stiffness
matrix, C is a damping matrix, D is a matrix describing the locations and orientations

of the force actuators, and G, is a matrix describing the points of application and

orientation of the disturbances.

The system mass and stiffness matrices M and K, are built up from informa-
tion about the elemental material properties, geometry, location, orientation, and
boundary conditions. Knowledge of M and K, enables calculation of such open-loop
structural information as element stresses, nodal displacements, and open-loop nat-
ural frequencies. The damping matrix C can be formed during the finite element
process using special damping elements. If this option is not desirable or available,

the damping effect can be included in a variety of ways (see Section 3.7.3).

The mass and stiffness matrices will be functions of the free elemental parame-
ters. Furthermore, these matrices will be linear functions of these structural design
variables for structures comprised of only truss, membrane and/or shear elements.
For the case considered in this work, where our structures are composed of only

truss elements, the structural design variables will be the cross-sectional area of each

element.

Once the finite element analysis has been performed, and the mass and stiffness
(and possibly damping) matrices obtained, the state space system can be formed.
This involves writing the second order equations of motion (3.47) as a first-order
state space system of equations, in which a choice of “state” must be made. There

are many such states that could be chosen, but two choices are the most common.

3.7.1 Physical State Space Model

A state space system based on physical variables can be formed by defining the

n = 2¢-dimensional state vector © as
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4
r=| (3.48)
§

The elements of this  are the actual degrees of freedom of the elements. Then, the

state space matrices F, G, and G,, of the realization of equations (2.1) can be formed

as

0 I 0 0
F = s G= ) Gw = (349)
~M™K, -M-'C M-D M-1G,,

A general design output matrix Hy will be of the form
Hy=|H, H)| (3.50)
where H, gives the contribution to this design goal from the displacement states, and

H; gives the contribution to this design goal from the velocity states.

3.7.2 Modal State Space Model

An alternative choice for state space representation is to first form the equations of

motion (3.47) in modal form [Mei], as

7+ ®7Con + [Win = 7T Du + 87G,,w (3.51)

where 7 is the vector of generalized modal displacements such that £ = &5, [w?] is a
diagonal matrix of natural frequencies squared, and ® is the matrix whose columns
are the mode shapes corresponding to the natural modes of vibration, which are

assumed to be normalized such that ®TM® = I.

To form the state space realization in terms of these modal variables, define the

state vector & as
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U]
o= [ } (3.52)
Uj

The elements of this @ are the generalized displacements and velocities of the modal

coordinates 1. Then, the state space matrices F, G, and G,, of the realization of

equations (2.1) can be formed as

0 I 0 0
F= , G= y  Gu= (3.53)
~w?] -9TC® oTD 37G,,

Note that for a general C generated from passive damping element information (if

this is even possible), the transformed damping matrix ®TC® will generally not be

diagonal.
A general design output matrix Hy will be given by

Hy=| H,® H;% | (3.54)

3.7.3 Damping Models

Damping of the structure is difficult to model in the traditional finite element sense.
Normally, damping in a certain form is assumed after the formation of the mass and
stiffness matrices. One form is Rayleigh damping [Bat], where the damping matrix

is formed as a linear combination of the mass and stiffness matrices as

C =aoM + a, K, (3.55)

If the damping ratios of some or all modes are either known or to be specified, C can

be defined using the Caughey series [Bat]

p-1
C=M)> oMK (3.56)
k=0

40




where p < n damping ratios {¢;, ¢ = 1,...,p} are specified, and the coefficients

{ak, k= 1,...,p} are calculated from the p simultaneous equations
1 ao 3 29—3 . -~
C;=§ ;+a1w,~+a2wi+---+ap_1w ) fori=1,...,p (3.57)
1§

Note that with p = 2, this result reduces to the Rayleigh damping as in equa-
tion (3.55). For large p in equations (3.57), the computational effort involved in
finding the coefficients a; becomes quite large. Also, assuming C must be differenti-
ated at some stage, the Rayleigh damping as in equation (3.55) or the proportional
damping as in equations (3.61) is in a much better form than that of equation (3.57).
A disadvantage of Rayleigh damping is that the higher modes tend to be more highly

damped than conventional wisdom dictates.

A damping model where the damping ratio in each mode is the same, and where

the modal damping itself is proportional to the modal frequency, can be formed by

defining C as
C=2K" (3.58)

where K'/* is the symmetric square root of K such that

K"K = Kk (3.59)

and ( is the damping ratio of the modes. Note that with the C as defined by equa-

tion (3.58), the transformed damping matrix in a modal state space representation
will be

oTCd = 200TK'®
= 2C[wi]
= [20wi] (3.60)
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where [w;] is a diagonal matrix of modal frequencies, and [2{w;] is a diagonal damping
matrix. This method of forming a damping matrix is also probably not practical due
to the effort involved. The diagonal nature of [2(w;] means that the modal equations
of motion (3.51) will decouple with this form of damping into equations of motion for
each mode. However, each mode is restricted with this form of damping to have the
same damping ratio and can be formed by simply specifying ®TC® to be a diagonal

matrix [2¢;w;]. That is, assume proportional damping of the form
@7 Co; = 2Gwib; (3.61)

where (; is the modal damping parameter, and §;; is the Kronecka delta. The as-

sumption in proportional damping is that the total damping in the structure is the

sum of the individual damping in each mode.

For state space realizations based on physical variables in this work, Rayleigh
damping as in equation (3.55) was used to model the structural damping. For state
space realizations based on modal variables in this work, damping of the form of equa-

tion (3.61) was used to model the damping. The particular values for the constants

ap, a1, and (; used are given later.

3.8 Gradient Analysis

For the numerical optimization procedure to be practical, especially as the dimen-
sionality increases to realistic structures, it is essential that it be possible to evaluate
the first-order sensitivities of the complex objective and constraint equations in an
efficient manner. The following sections summarize the analytical derivation of the

appropriate gradients, where it will be seen that such efficient expressions can indeed
be found.

3.8.1 Objective Function Gradient

For structures formed from truss/membrane/plate type elements, the objective func-
tion (the weight) is a linear function of the finite element thicknesses and/or cross

sectional areas. That is,
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Ns Nl
J(*) =3 pilip} +)_m; (3.62)

=1 j=1

where N, is the number of structural design variables (number of finite elements,
dimension of p®), pi, L; and p; are the density, fixed geometric size (length of a
. truss element, or area of a membrane or shear element) and the structural design
variable (cross-sectional area for a truss element, or thickness of a membrane or shear
. element) of the i** finite element, N, is the number of nonstructural lumped masses
on the structure, and m; is the j®* nonstructural lumped mass. The gradient of the

objective function is then easily constructed as

aJ(p°)

= p;L; L = 1oy dVs .
a1 p fori=1 N (3.63)

which is constant for all designs. Note that the gradient of the objective function

with respect to any controller design variable will be zero, since in this work the mass

of the controllers was not considered.

3.8.2 Controller Constraint Gradients for the case of Full
State Feedback Control

The controller constraints are given by

‘TR K.
gcc;=W—1§0 fOl"i:l,...,np (364)
tr[HI W;Hy X
e, = B 1 <o oriztn, (3.65)

)

where X is the covariance matrix, found as the solution to the Lyapunov equation

FuX + XFY + G,X.,GT =0 (3.66)




Fy=(F - GK) (3.67)

For this particular case, it is assumed that the feedback gain matrix K at any

point is given by the solution of the appropriate LQR problem as

K = R'GTA, (3.68)
FTA, + A.F ~ A,GR'GTA, + W =0 (3.69)

where

R = disg {(%) &} (3.70)

Na A )
W= z(?) HIW.H,

=1 :

o~
'CJD
-~3
—

p—"

This assumption is based on the analysis that showed that the first-order Kuhn-
Tucker optimality conditions for the controller variables were satisfied for an LQR
controller of this type. However, this result only holds at the optimum point, and not
necessarily everywhere within the design space. This introduces another constraint
into the problem, namely the LQR constraint, similar to the covariance equation
constraint. Using this approach then, both X and K are now treated as variables

dependent on the particular values of the structural design variables p°.

Therefore, if scalar p; represents a structural design variable, the controller con-

straint gradients are given by

a{jcc 1 [(a[{T , T al\’;) T , a‘Y
Teaw = —tr || = RiK+ KTR=—| X + KTR.K;=—
dp; pg? Op; Op; Ip;
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0goci _ —I—tr [(3114

OH,, oX
i T
o = o g Wela + HIW. 5 % ) X + HY Wila ]

dp;
(3.73)

With K defined as in equation (3.68), its derivative with respect to p; becomes

_0£ R™! [3G

OA,
= +GT ] 3.74
Op; (3.74)

Op; Op;

where ‘93—‘:-: can be found by differentiating equation (3.69), and using equation (3.68),
to be

oA,  dA oF 0G oF 9G oW
Fl——+4 —Fy= (—— - —K) Az + A; (— - —K) +<—| (3.7
‘op; " 9p; [ dp;  Op; Op; Op; o, | T

where

oW e QHT OH,,
Ty = 2 (az) ( T Wills, + HLW: ! ) (3.76)

Note that only the right-hand side of the Lyapunov eqaution (3.75) changes for
differing p;. Since most of the effort involved in the numerical solution of Lyapunov
equations is in either a decomposition phase (for direct solvers) or an inversion phase
(iterative solvers) operating on the left-hand side of the equation, one decomposition

or set of inversions will be enough to solve equation (3.75) for all p;.

aK. of 2K
ap;
as in equation (3. 7‘7) can be found easily knowing the partitions of K used to define

The partitions -+ required for each of the control effort constraint gradients

vhe original constraint functions (3.64). From equations (3.72), the gradient of the

covariance matrix is required, and can be found by differentiating equation (3.66) to

get

0.4 8X

T4+H; =0 3.77
ap; GPJ (3.17)
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where

T
"X + X 4 2 X,GT 4+ G X G, (3.78)

M, =
? dp; 31% apJ op;

OFq (gg aG ., aK)
Ip;

Note again that only the right-hand side of equation (3.77) changes for differing p;.
Further, equation (3.77) is the adjoint of equation (3.75), which means that only one
decomposition or set of inverse calculations (which will of course need to be stored)
of the left-hand side of equation (3.75) is required to solve both equations (3.75) and
(3.77) for all p;. This property significantly improves the efficiency of evaluating the
gradients for this particular problem. However, the Lyapunov equation (3.77) must
still e solved for every p;. To avoid this, define the matrices P; and Q; as the

symmetric positive definite solutions to the respective Lyapunov equations [Can]

FIP, + P.Fy+ KTRK; =0 (3.80)
FIQi+ QiFu+HIW:Hy =0 (3.81)
so that
KTRK; = - (FIP: + PiF.) (3.82)
HLWiH,, = — (F1 Qi+ QiFu) (3.83)

Substituting equations (3.82) and (3.83) into equations (3.72) gives

0gcc 1 [(31\ T 31\,) aX']
_—t = —t “R;K; + K R; X - F P+ P, F,
apj ﬂf ' 0 P; ap_, ( l) apJ
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(3.84)

agoc‘ 1 [(aHd‘
-— = —tr

0X
= )x (FIQi + QiF) ]

aPJ

Since tr[AB] = tr[BA] for any square AB, the above equations can be rewritten as

99ec; _ 1 0K; 1o OK; 0X 00X _r
p; ﬁ,?“[(a RK; + K; R; ,)X Pt<Fcla aJF )]

(3.85)
9oc; 1 [(BH,{ T aHd.) ( 3X 3’( )]
=28 = —tr || AW H, + HEW,—— ) X - Q; ot
T e T e *

and with reference to equation (3.77) becomes
T
09ces _ —2tr [(aK' R:K; +KTR,6K)X+'PH]
9p; B; i
(3.86)

T
99ocs = —1—2tr 9H,, —2W;Hy, + HTW OH,, X + QH;
ay aPJ aPJ

The advantage of equations (3.86) over equations (3.72) is that only the two
Lyapunov equations (3.80) and (3.81), for P; and Q; respectively, need be solved
to find the constraint gradients for every p;, rather than the N Lyapunov equation
solutions required to evaluate the covariance equation gradient for every p;. Of course,
H; must still be evaluated for every p;, but this would have been required anyway in
. equation (3.77).

3.8.3 State Space Matrix Gradients

The state space matrices are given by equations (3.49) and (3.50) for a realization

based on physical variables, or equations (3.53) and (3.54) for a realization based on
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modal variables. For each of thses cases, the gradients of these state space matrices
with respect to the structural design variables is required. Obviously, the gradients

of these matrices with respect to the controller design variables will be zero.

Let p; represent a structural design variable. Then for a realization based on

physical variables, the gradients of the state space matrices are given by

0 0
oF
‘é‘;); = <_ aM—l I( _ M_lgi(i) (_ ajv,[—l C _ M_l gg) (3-87)
ap; dp; Op; Jp;
0
oG
5;); = OM" D (388)
| Op;
[ 0
oG, _
T?E = oM . (3.89)
[ Op;
where
oM™ oM
= M1 M 3.90
Op; Op; (3.90)

is the derivative of the inverse of the mass matrix M with respect to the structural
design variable p;. The derivative of M can be found very easily since it is simply
the derivative of the local elemental mass matrix expressed in the global coordinate
system. In the case when physical variables are used as above, the design output
matrices Hy will not be functions of the structural design variables, so that

0H,,

== = 3.91
o9, (3.91)
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For a realization based on modal variables, the gradients of the state space matrices

are given by

0 0
g_p - (3.92)
D; —A, -A,
0
8G
op; | 98T, (3.93)
Op;
0
3G, _
e ?-S’-T-Gw (3.94)
op;
where
(8 O)s o,
h=dog \5 B a—,,,.} (3.93)
. G 0A (o 0A n 3/\n}
A, =d . e 9 .
2 = diag {mapj ¥, oY w (3.96)

The design output matrices Hy; will now be functions of the structural design variables

because they will be functions of the eigenvector matrix ®. Therefore, the derivative

of Hy, is given by

(3.97)

OH,, - [ .?2. H @_ ]
Op; ‘op; " op;

For the case when modal variables are used as above, the derivatives of the eigen-
values and eigenvectors will be required. This poses no problem if the instantaneous

structure has no repeated eigenvalues, and the relevant expressions can be found, for
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example, in [Fox, Nel]. However, most researchers in the past seemed to avoid cases
where repeated structural frequencies were present. Only very recently has this issue
been addressed [Mil-2, Jua], and methods to evaluate the eigenvalue and eigenvector

derivatives for the case where repeated eigenvalues are present are given in Appendix

B.

3.9 Design Variable Linking

Even though the control design variables have been removed as active design variables
in this case, the number of structural design variables can still be very large. An
optimal solution where all structural elements have been treated as independent would
probably define all elements as being a different size. In practical terms, it is not
desirable to have a structure where every element is different, because this can cause
production and spares problems. A process known as design variable linking can serve
to reduce the number of different sized structural elements that will be needed. The
simplest case of linking is to assign a single variable to a group of elements, so that
all elements in that group will have the same variable value. Note that this process
in effect introduces more constraints into the design process, which can affect the

optimal solution found. However, a trade off between weight and ease of production

may be necessary.

If there is no a priori knowledge of the optimal structure should be somehow
symurnetric, it is difficult to incorporate design variable linking into the solution pro-
cedure. Perhaps a better approach is to consider the linking only after initial results
for unlinked designs have been evaluated. Regardless, design variable linking should

be carefully considered at some stage in the design process for any practical design.
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Figure 3.1: Algorithm for Solution by Mathematical Programming and Approxima-
tion Techniques
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Chapter 4

Example: The DRAPER 1
Structure

4.1 The DRAPER I Structure

The DRAPER 1 structure [Str], which has been used as a generic flexible spacecraft
model, is a tetrahedral truss attached to the ground by three right-angled bipods, as
shown in Figure 4.1. Although attached to the ground, this model will act as a typical
flexible structure pointing subsystem (e.g. antenna, radar, optical) attached to a rigid
core. Any motion would then be with respect to this rigid core, and transmit forces to
it. Consequently, this model has no rigid body degrees of freedom. The finite element
model has 12 truss elements, since the joints are pinned and transmit no moments.
There are four nodes that are free to move in all directions, so the model contains 12

degrees of freedom. The structural design variables are the cross-sectional areas of

each of the 12 truss elements.

In [Str], the structure is set up as a non-dimensional model. However, for our
purposes we use a dimensional model with material parameters of p = 0.11b/in?,
E = Young’s Modulus = 20 kpsi. The dimensional values E and p were chosen
to give initial numerical values of structural frequencies for the dimensional model
roughly comparable to those of the non-dimensional model. The nodal coordinates
are listed in Table 4.1, giving the length of the six upper bars as 10 feet and the
length of the lower six bipod bars as /8 feet in this case. The structural members
are numbered as defined by the finite element model connectivity data, summarized

in Table 4.2. This dimensional model contains no non-structural mass.
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Elements 7 through 12, the three right-angled bipods, take on the duties of velocity
sensors and colocated force actuators. Only one output response constraint is defined
(ne = 1), with the design output vector y, representing the line-of-sight error of the
top vertex [(z,y) displacements of vertex 1). The disturbances, labelled w; and w; in

Figurc 4.2, are assumed to be independent, zero mean, Gaussian disturbances with

intensity 1.0.

Since there are 12 degrees of freedom in the model for this structure, the state-
space model will be 24** order. There will be 6 inputs and 6 outputs, corresponding
to the 6 legs of the structure. The damping added to the state space system will
depend on the state space realization used. For cases where a realization based on

physical variables is used, the damping matrix C is formed to be

C =0.1M+0.001K

For cases where a realization based on modal variables was used, the damping ratio

of each mode was specified to be 0.1 % of the modal frequencies during the formation

of the state matrices.

Only one control effort and one output response constraint are considered in this
example. The weighting matrices R and W are set to the identity matrices, so that
equal weighting is given to all components of u and y,;. The minimum cross-sectional
areas for all elements was specified as 0.1 in®. For this problem, no static structural
constraints were specified, the intent being to investigate the effect of the closed-loop

controller constraints on the structural design optimization.

4.2 Numerical Considerations

Initially, nominal values of all elements are specified arbitrarily. For differing val-
ues of allowable expected output response (a?) and allowable expected control effort
(8?), this initial design is scaled by adjusting the cross-sectional areas and Lagrange
multiplier ratio, to meet the controller constraints. Using the gradient information,
the design variables and the feedback gains are computed using the approximate for-

mulations to further reduce the system mass. If, upon solution of the approximate
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problem, constraints are violated, the structure is scaled to the constraint surfaces
using the scaling scheme discussed. This will change the weight from that value
returned as the optimal approximate problem weight. Therefore, even though the
optimal approximate problem weight will always be less than or equal to the weight
before the approximate problem solution, after the scaling the weight change for that

global iteration may sometimes be positive.

If the approximation functions are a high fidelity representation of the actual
constraint surfaces, then during the solution of the optimization problem, we would
not expect the solution to stray far from these actual constraint surfaces. That is, after
each iteration, the actual constraint values would be close to the values predicted by
the approximate functions In practice, this is only true when the approximate problem

domain is restricted to a small region about the expansion point via the move-limits.

During the first few global iterations of the solution algorithm, the move-limits are
on the order of Yy,z, Which is nominally set at 1000. This allows virtually unlimited
movement in the design space. After several global iterations, the move-limits are
reduced, in the manner described in Section 3.6, to the order of 4yin. This parameter
can significantly affect the convergence properties of the solution algorithm, and is

nominally set at 1.25, allowing the design variables to change by +25% and -20% in

one iteration.

Two problems may occur when 4 & Ymin. First, if the approximation functions
predict the actual constraint behaviour very well, this is evidence that the constraint
surface is highly linear over large region. In such a case, convergence may be very
slow, and would be improved by increasing Ymin. The reverse may occur if in this
limiting case the approximate functions predict the actual constraint behaviour very
poorly. This is evidence of high local curvature of the constraint surfaces, and a
reduction in the move limits by reducing Ymin will generally improve convergence. In

fact, obtaining ultimate convergence may actually require such a reduction.

When obtaining optimal designs for differing 8% and a? values, it is sometimes

necessary to alter the value of 4,,;, to take advantage of local conditions near an
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optimum point. This can be accomplished by either manually stopping the solution
process and changing ymn before restarting, or by developing some adaptive online
strategy to accomplish the same task. Changing the objectives of the optimization,
by altering a? and 3% for example, will often require a change in Yymin. The design

process seems to be insensitive to 4maz, Which is kept constant for all cases reported

in this work.

If a state space model based on modal variables is to be used, the cpen-loop
frequencies and mode shapes will be required. These can be calculated in a post
processor to the finite element analysis code for given mass and stiffness matrices. In
our program, the eigenvalues are first estimated using the Sturm sequence property of
the eigenvalues [Bat], by successive bisection of the range containing the eigenvalues
of interest. The eigenvectors of interest are then found using a forward iteration tech-
nique after applying a shift of the estimated eigenvalues as found above. Starting with
an initial trial eigenvector populated by ones, the iteration technique should converge
to the eigenvector corresponding to the eigenvalue for which the shift approximates.
Care must be exercised in cases where “identical” eigenvalues are detected. In these
cases, Gramm-Sclunidt orthogonalization is used at the beginning and end of the
iteration process to deflate the initial and final values of the eigenvectors of other
eigenvectors associated with the repeated eigenvalue. Finally, after all eigenvectors
of interest are extracted, the eigenvalue estimates are updated using the Rayleigh
quoticut of the appropriate eigenvectors. As a consequence, the eigenvalues will be

accurate to second order in the error present in the eigenvectors [Nob).

The forward iteration method of finding eigenvectors finds one eigenpair at a time,
and consequently numerical errors creep in and are transmitted and amplified as more
and more eigenpairs are extracted. Since here we will either desire the entire eigen-
structure for smaller systems, or a set number of the lowest frequency eigenpairs from
which to construct a low-order design model for large systems, a subspace iteration
technique to extract all the desired eigenpairs at once would probably be more ap-
propriate. Errors in the eigenvectors can be very detrimental to the accuracy of the
derivatives. The integrity of the derivatives is very important in any gradient based

solution approach.
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It is well known that the evaluation of eigenvectors is numerically difficult and
subject to numerical error, especially for large systems and for systems with repeated
eigenvalues. As was shown previously, the eigenvalues and eigenvectors, and their
respective derivatives, are required for the evaluation of the derivatives of the state
matrices with respect to the design variables in cases where a modal state space repre-
sentation is used. Appendix B presents two methods for evaluating these derivatives,

for systems both with and without repeated eigenvalues.

There is first a problem numerically in deciding when repeated eigenvalues are
prescnt. The number of repeated eigenvalues detected depends upon a specified de-
tection cutoff value. Two eigenvalues are deemed identical if their relative difference
is less than some value €, which is specified by the user. The choice of ¢ is a non-trivial
task since numerically two eigenvalues are never identical, and since we can generally
not tell apriori the number and multiplicities of repeated eigenvalues present in a par-
ticular configuration. For example, for the DRAPER I structure with all structural
design variables the same (equal area elements), and with ¢ set to 5 x 10~4, four pairs
of repeated cigenvalues are detected. However, if € is set to 1 x 1074, only three pairs

of repeated eigenvalues are detected.

If a repeated eigenvalue is not detected where in reality there is one, by setting
€ too small, then the eigenvector obtained will be treated as unique when in fact
it is not. Derivatives of eigenvectors for repeated eigenvalues only ezist for specfic
eigenvectors from the associated subspace. Therefore, failure to detect a repeated
eigenvalue can result in large discontinuities in the associated eigenvector derivatives.
Additionally, the eigenvector derivatives for nonrepeated eigenvalues are inversely pro-
portional to the difference between that eigenvalue and all others (see Method 2 given
in Appendix B). Therefore, a non-detected repeated eigenvalue will dominate the cal-
culated derivative, and any errors in it will be greatly amplified. On the other hand,
if a repeated eigenvalue is detected where in reality there is none, due to setting ¢ too
large, an extra eigenvector will be included into the basis for the subspace of eigenvec-
tors associated with that particular eigenvalue. This would increase the dimension of
the associated subspace by adding a mutually orthogonal eigenvector. The associated

unique eigenvectors from this subspace that have continuous derivatives would then
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include the effect of an eigenvector not associated with the repeated eigenvalue.

The calculation of eigenvectors and eigenvector derivatives for systems with re-
peated roots is a particularly troublesome and difficult task. Even though the ma-
jority of the time the system will probably not have repeated eigenvalues through
symmetry, this can occur for example with symmetric strnuctures subject to sym-
metric disturbances. In determining the derivatives of eigenvectors associated with
repeated eigenvalues, it is assumed that the eigenvectors associated with a particular
eigenvalue form a subspace, and that any linear cor.bination of eigenvectors is also
an eigenvector associated with that eigenvalue. Numerically however. this is not ex-
actly true, due to the errors involved in finding these eigenvectors. As a consequence,
even though the expressions given in Appendix B for derivatives of eigenvectors as-
sociated with repeated eigenvalues are analytically correct, our experience has shown
that these derivatives are very sensitive to errors in the evaluated eigenvectors. These
errors are carried into the gradients of the controller constraints, and hence into the
approximate problem generation. When at an active controller constraint, solution
of the approximate problem should move the design approximately along the con-
straint surfaces. However, at a design for which repeated eigenvalues are detected
this may not occur because the errors in the gradients compromise the integrity of

the approximate problem at this point.

One possible way to avoid these problems is to use a state space formulation based
on physical variables. Here, only the mass and stiffness matrices are required, and
these are calculated during the finite element analysis anyway. Such a solution to
this problem is not practical for “large” systems however, where a model based on a

subset of the modes will usually be used to reduce the computational and memory

storage needs.

4.3 Results '

Runs were made using CSOPT on the DRAPER I structure using initially an inverse
design variable approximation for all constraint functions. The initial structure was

defined with all structural design variables sct at 10 in* and with the Lagrangian
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multipliers A, and A, set at 1.0. This set of initial conditions, summarized in Table 4.3,
will be termed the symmetric set of initial conditions, for they specify a structure with
a number of vibrational modes of the same frequency (repeated eigenvalues). A range
of allowable expected output response (a?) of 1 x 10~% in® to 1 x 107 in? in steps of

1 x 10~* in?, and allowable expected control effort (42) of 50 1b? to S0 Ib? in steps of
10 1b? were used.

Tables 4.4 and 4.6 summarize the resulting minimum weight in pounds found by
CSOPT for cach of these cases. The values in Table 4.4 correspond to the case where
a state-space realization based on the modal displacements and velocities was used,
hereafter called CASE A. The values in Table 4.6 correspond to the case where a
state-space realization based on the physical nodal displacements and velocities was
used, hereafter called CASE B. The specific value of 4,,in used in each of the cases
listed in Tables 4.4 and 4.6 are given in Tables 4.5 and 4.7 respectively.

We would intuitively expect two trends in the data displayed in Tables 4.4 and
4.6, as well as expecting the two tables to be the same. The optimum weight should
decrease as the allowable control effort 32 is increased at constant allowable output
response a? (left to right across the table), and the optimum weight should decrease
as the allowable output response o? is increased at constant allowable control effort 32
(down the table). With reference to Table 4.4, we can see that this trend is observed
in a macroscopic sense only, there being several examples where this trend is not
observed. For example, considering the first column of Table 4.4, which corresponds
to #? = 50 Ib? for varying a?, we see only two exceptions to the expected trends,
these being at a® values of 6 x 10~ and 9 x 10~%. Similar results are observed in all

other columns and rows of Table 4.4.

The resuits using the physical variable realization are more consistent than using
the modal variables, although still not totally uniform. In Table 4.6, we find that
there are only two locations where our expected trends do not seem to hold. In the
case where 3% = 50, the optimum weight for a® = 8 x 10~% of 1115.2 lbs is actually
lower than might otherwise be expected considering the other values in this column.

The only other exception is for 4> = 80 and a® = 7 x 107%. One might then draw
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the conclusion that using the physical nodal variables as a basis for our state-space
model results in a more consistent set of solutions, with respect to the optimum
weight found, than does the case where the modal variables are used. We cannot
however expand this conclusion to say that one state-space model produces better
results (lower optimum weights) than the other. In fact, on this count the two results
are very inconsistent. For example, for 42 = 50, the optimr m weights found in CASE
A are consistently lower than those found in CASE B, whereas for 82 = 80, it is
the CASE B results that are consistently better (or at least comparable). It might
be pointed out that the results in CASE B were consistently easier to obtain, there
being no need to alter the nominal value of 4,,;, (see Table 4.7 c.f. Table 4.3), and

the number of global iterations required for convergence being consistently lower.

Some understanding of these contradictory results can be found by considering
Tables 4.8 and 4.9, which give, for the two cases, the optimal element areas found
for A% = 50 and for varying o®. Also given in these tables are the number of global
iterations required for convergence, the final values of the Lagrange multipliers (which
then defines the LQR controller), and the initial value of the structural design vari-
ables (all the same for the symmetric set of initial conditions} at which the initial
scaled system satisfies the constraints. Immediately apparent from Table 4.8 is a
number of seemingly separate regions of the design space into which this structure
has converged. For example, the final designs for o® = 5 x 107 and o® = 7 x 1073
scem to be similar in relative structure. Here, “similar” refers to the relative sizing of
the structural members, in that design variables that are “larger” in one design are
“larger” in the other. Both these designs are however distinctly different from those

for a® =1 x 10~% and a? = 3 x 107%, which themselves are similar.

Considering Table 4.9 corresponding to a physical state space representation, we
sce a totally d'fferent phenomenom. Here, the solution algorithm seems to converge
to the same region of the design space, with the exception of one case (a? = 8§ x 107%).
This corresponds to one of the cases for which the optimum weight does not fit into
the pattern suggested by the other cases for the same allowable control effort, as
mentioned above. This particular solution obviously lies in a different region of the

design space than do the other solutions corresponding to other a? values. Also note

60




that the number of global iterations required for convergence is very low in all cases

except the one for which another region of the design space is encounted.

The conclusion seems to be that we are converging into different regions of the
design space with our solution algorithm, and that there are numerous local minima.
Several columns of Table 4.8 seem to define their own region of the design space,
being dissimilar to any other column. In other words, our design space seems to have
multidimensional corrugations leading to multiple local minima. The solutions will lie
somewhere on the intersection hyperplane between the surface of constant allowable

output response and the surface of constant allowable control effort.

This corrugated nature of the design space can be illustrated by considering the
solutions obtained, for the same constraint case, when starting from different initial
conditions. For the case of 32 = 75 and a? = 1 x10~%, Tables 4.10 and 4.11 summarize
the results of runs made when modal state space realizations and physical state space
realizations are used respectively, when only the initial conditions are varied. The
different initial conditions are defined by setting all structural elements equal except
the first (element 1), to which is added a percentage of the size of other elements.
Even with this limited variation in the initial conditions, there are seemingly many
distinct regions in the design space into which the system may converge. A picture of
the constraint surfaces as a one-dimensional slice of the multidimensional space will
emerge if these optimal structures are varied into each other in a linear fashion, and
the constraint values are calculated between each case. That is, the structural design
variables and Lagrange multipliers are changed linearly from the optimal values in
one case to those in another case. Then the constraint surfaces obtained would be

those seen when travelling in a straight line between each successive point.

The results of such an analysis are shown in Figures 4.3 and 4.4 for the cases
corresponding to those given in Tables 4.10 and 4.11 respectively. As expected, the
weight varies linearly between the cases, but it is the constraint curves that are much
more revealing. For example, considering Figure 4.3, one can see that between case 1
and case 2, there is a “ridge” of output response larger than the maximum allowable

value. Similarly, the control effort first decreases, then also increases to a ridge of
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high value. This corresponds to a hump in the constraint surfaces Letween the two
points in the design space. Assuming that we would see such behaviour when moving
in every direction away from case 1 and case 2, rather than just in a direction between
the two as shown in Figure 4.3, then the design points corresponding to these cases
would represent local minima. In this situation, the design can become “trapped”

in the such a locally convex region, causing the solution algorithm to converge to

different points.

With reference to the same Figure 4.3, one can see that both the output response
and control efforts are virtually constant between cases 2 and 3, while the weight
increases slightly from 2053.0 1b to 2090.6 1b. This indicates that case 2 and case 3
actually represent the same optimal solution, with the difference being accounted for
in the variance allowed by the convergence criteria used. The direction in the design
space represented by the movement from case 2 to case 3 would lie in the intersection
hyperplane of the surfaces of constant control effort and output response constraints,

and would be at a shallow angle to the linear surface of constant weight.

Similar observations can be made considering Figure 4.4, where none of the cases
appear to be representing the same optimal solution, although the solutions are very
similar. Cases 1 and 2 in Figure 4.4 are only separated by a low ridge of constraint
values, whereas cases 4 and 5 are separated by a high ridge. Although it is difficult to
visualize, and impossible to sketch, the actual (in this case) 13-dimensional constraint
surfaces and their 12-dimensional surface of intersection, travelling between specific
points in the design space reduces the surfaces to manageable quantities. Figures 4.3
and 4.4 graphically illustrate a design space that is a very complicated function of

the design variables, in which multiple local minima abound.

There are some other tests we can make on the hypothesis that we are becoming
trapped in local minima. If the design is actually trapped in a local minimum, the
solution should stay in the vicinity of that minimum if the problem is changed only
slightly. That is, if a converged solution is used as the initial conditions for an
optimization run where the constraint objectives are changed by a “small” amount,

then the new problem should converge to a point that is “close to” the initial point.
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Table 4.12 represents such a situation. Here, the solution was first obtained for the
case where 32 = 50 and a® = 1 x 10~%, and where a modal state space realization and
inverse design variable approximations were used. This converged solution was then
used as the initial conditions for the cases 82 = 50 and a® = 2 x 1073, and 3% = 60
and o = 1 x 10~%. Moving down each column, and across the top row, of Table 4.12,

the converged solution from the previous case was used as the initial condition for

the new problem.

As can be seen from Table 4.12, the two expected trends in the data, as mentioned
previously, are now observed without exception. The optimal solutions for the first
two columns of Table 4.12, corresponding to cases where 3% = 50 and 3% = 60, are
given in Tables 4.13 and 4.14 respectively. All the solutions now appear to be in the
same local region of the design space, as evidenced by the relative sizing of the optimal
structures. For example, note that in all converged designs, structural elements 9, 10,
and 12 are at their lower gage limit of 0.1 in?, and that the first structural element
is the largest by far. These results test the hypothesis that designs are converging to

local minima, and indicate that the local optima are real.

Convergence to local minima occurs regardless of whether physical or modal state
space representations are used to model the structure. The final converged solution
when a physical state space realization is used should also be optimal for the same
constraint objective case if a modal state space realization is used instead. Such
a situation is documented in Table 4.15. The first column in Table 4.15 gives the
final converged solution for the case when 82 = 50 and o? = 2 x 10~%, and when a
physical state space realization and inverse design variable approximations were used
(c.f. column 2 of Table 4.8). When this solution was used as the initial condition
for an optimization run for the same case, but when a modal state space realization

was used rather than the physical realization, the results in the second column of

Table 4.15 were obtained.

Note that the initial values for the control effort and output response constraints
for the case when a modal state space realization was used (column 2 of Table 4.15)

were not exactly 50 and 2 x 10~3 respectively as expected. Although the differences
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were small, they were numerically significant, and underscore the differences between
physical and modal state space representations of the same structure. The differences
come about due to the numerical errors involved in eigenvalue and eigenvector calcu-
lations. Because of this small difference, the structure is scaled up by a small amount,
and the optimal solution is given by the variable values in the second column of Ta-
ble 4.15. If this structure was then the initial condition for an optimization run where
a physical state space representation was again used, the results obtained are given
in the third column of Table 4.15. Once again, there is a small discrepancy between
the initial constraint values and those expected, for the reason given above. Quite
obviously however, all three designs given in Table 4.15 are the same local optimum
point despite the small differences. Once again, this indicates that the apparent local

optima do actually exist, and are not figments of a numerical imagination.

The only difference between the results from CASE A and CASE B runs is that
modal and physically based state-space models respectively are used. The structure
is initially symmetric, resulting in repeated eigenvalues. The final structures of CASE
B listed in Table 4.9 are also symmetric with repeated eigenvalues (except that for
o? = 8 x 107°). None of the optimal structures of CASE A listed in Table 1.8 are
symmetric. In all our studies to date it seems that the solution algorithm in terms of

physical state variables seems to be more predisposed to retain the symmetry than

in the cases when a modal state space is used.

To illustrate hat is happening, consider the iteration histories for the same run
from CASE A and CASE B, in particular the case when 3% = 50 and a? = 2 x 10~°.
The iteration histories are contained in Tables 4.16 and 4.17 for CASE A and CASE
B respectively. From Table 4.16, we can see that during the first global iteration,
when there are four detected repeated eigenvalues, and unlimited movement in the
design space is allowed, the inverse design variable approximations used here are very
poor approximations to the actual constraint behaviour. However, during the second
global iteration, when we also allow virtually unlimited movement in the design space

but now have no repeated eigenvalues, the approximations are much better.

These results are typical of all runs in CASE A. The combination of using an
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inverse design variable approximation and a modal state space representation seems to
result in very poor approximate functions when repeated eigenvalues are present. We
believe the reason for this is due to the errors present in the derivatives of eigenvectors
associated with repeated eigenvalues, the causes of which were outlined in the previous
scction. Ilowever, even when there are no repeated eigenvalues present, we can have
poor approximations due to cumulative errors in the gradients combined with an

inverse design variable approximation formulation.

Using a physical nodal state space representation does not require calculation of
cigenvalue and eigenvector derivatives, only the derivatives of the mass, stiffness and
damping matrices. These are very easy to obtain given the element informations and
the global and local elemental coordinate system definitions. The solution algorithm
here seems to work very well and converge quickly, even in the case when repeated
eigenvalues are present, as shown in Table 4.17. Again, the results indicated in

Table 4.17 are typical for all runs in CASE B.

All of the results presented so far are for cases where inverse design variable
approximations are used for the constraint functions. However, if hybrid design vari-
able approximations are used, similar results and trends to those already noted are
observed. The optimum weight found by CSOPT when hybrid design variable ap-
proximations and both modal and physical state space representations are used are
given in Tables 4.18 and 4.20 respectively (hereafter termed CASE C and CASE D
respectively). Tables 4.22 and 4.23 give the optimum designs for 4 = 50 and varying
a? for CASE C and CASE D respectively.

From Table 4.22 (CASE C), it is apparent that using hybrid design variable ap-
proximations and modal state space representations has led to optimal designs which
are much more similar than was the case when inverse design variable approximations
were used (compare to CASE A, Table 4.8). That is, the optimal designs listed in
Table 4.22 for the most part seem to lie in the same region of the design space, since
the relative sizes of the elements are similar. Of course, there are still exceptions, for
example when a2 = 7 x 107° and o = 9 x 10~°. These two designs are the two that

might seem anomolous when considering the 32 = 50 column of Table 4.18. Final con-
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verged weights however, seem to be rﬁuch larger when using hybrid approximations
than were obtained using inverse approximations. This can be explained by the fact
that the hybrid approximations give a better approximation of the constraint surfaces
than do the inverse approximations. Therefore, less scaling to the constraint surfaces
need be done, and the design tends to converge quickly to a local minima close to
the specified initial conditions. Even shallow local minima will trap the design easily
because the approximations are predicting the actual constraint behaviour very well.
Of course, if the initial point is in an advantageous point in the design space. lower
weight solutions may be obtained using hybrid approximations than were obtained

using inverse approximations, as seen in some cases in Table 4.23.

If a physical state space representation is used, then using either the inverse or hy-
brid design variable approximations seem for the most part to give optimal designs for
varying o? and (3? that lie in the same region of the design space. In fact, comparing
Tables 4.6 and 4.20, many of the optimum weights are basically identical regardless
of whether inverse or hybrid design variable approximations are used, even though
the actual optimum design variables may not be the same (compare Tables 4.9 and

4.23). Once again however, referring to Table 4.23 (CASE D), there are exceptions,

notably for a® =2 x 10~ and a* = 6 x 1075.

Our conclusion is that this procedure has achieved only limited success. Solu-
tions can be obtained, but no guarantee can be given that these solutions will be
“good”, and no algorithmic way exists to decide how to go about getting a better
(lower weight) solution. There does seem to be some advantages to be gained in not
attempting to be as accurate as possible in approximating the constraint functions.
The corrugated nature of the design space makes the problem very difficult, and these

difficulties can only get worse as the dimensionality increases.
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Figure 4.1: The DRAPER I Structure

Figure 4.2: The disturbance model
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Node || = (ft) | y (ft) | =z (ft)
1 0.0 0.0 10.165
2 -5.0 | -2.887 2.0
3 5.0 -2.887 2.0
4 0.0} 5.7735 2.0
5 -6.0 | -1.1547 | 0.0
6 -4.0 | -4.6188 0.0
7 4.0)-4.6188 | 0.0
8 6.0 | -1.1547 0.0
9 2.0 5.7735 0.0
10 -2.0 | 57735 ¢ 0.0

Table 4.1: Nodal Positions for the DRAPER I Structure

Element | Node 1 | Node 2
1 1 2
2 1 3
3 1 4
4 2 3
5 3 4
6 2 4
7 2 5
8 2 6
9 3 7
10 3 8
11 4 9
12 4 10

Table 4.2: Truss Element Connectivity Data for DRAPER I Structure
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Element | Initial value (in?)

10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10 10.0
11 10.0
12 10.0

[y

W 00 =~ O Ot W N

Table 4.3: Symmetric Set of Initial Conditions
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3?
-9) 50 60 70 80
2347.1 | 2991.4 | 2107.4 { 2924.9
2077.3 | 2030.8 | 1914.4 | 1289.7
1878.0 | 1658.9 | 1472.9 | 1216.8
1548.3 | 1409.7 | 1653.2 | 1021.5
1418.9 | 1319.2 | 1459.5 | 937.4
1460.6 | 1209.5  964.9 | 1009.8
1209.0 | 1076.0 | 928.7 | 1052.7
1066.7 | 1214.1 ] 987.9 ) 790.2
1126.3 | 940.5 | 854.0 | 720.1
971.9 | 1035.1 | 766.4 | 970.6

a? (

X
—
o

© 0 = O U WY

—
o

Table 4.4: Optimal weight using a modal state-space realization, the symmetric set
of initial conditions, and inverse design variable approximations. (CASE A)

ﬂ'l

a? (x107%) || 50 | 60 70 | 80
1.25 1 1.25 | 1.25 | 1.25
1.20 | 1.25 | 1.25 | 1.25
1.20 | 1.25 | 1.25 | 1.20
1.20 | 1.25 | 1.25 { 1.15
1.20 | 1.25 | 1.25 | 1.15
1.20 | 1.25 | 1.15 | 1.15
1.20 | 1.25 | 1.15 | 1.15
1.20 { 1.25 | 1.15 | 1.15
1.10 [ 1.20 | 1.15 { 1.15
1.10 | 1.20 | 1.15 | 1.30

O 00 ~J O Gt oA WY

—
o

Table 4.5: 4min used to obtain the values in Table 4.4 (CASE A)
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p
a? (x107%) 30 60 70 80
1 3241.4 | 2717.8 | 2570.9 | 1821.8
2 2395.4 | 1921.0 | 1626.5 | 1362.4
3 2012.1 | 1623.3 | 1357.3 | 1141.4
4 1779.9 | 1429.2 ) 1241.7 } 999.7
) 1618.1 | 1299.0 | 1088.5 | 932.5
6 1496.8 | 1202.2 | 1009.8 | 908.1
7 1400.9 | 1128.6 | 948.9 | 955.2
8 1115.2 | 1065.7 | 893.9 | 787.1
9 1260.1 { 1014.5 | 851.7 | 724.2
10 1206.2 | 970.4 | 814.4| 673.5

Table 4.6: Optimal weight using a physical state-space realization, the symmetric set
of initial conditions, and inverse design variable approximations. (CASE B)

ﬂ2

o (x107%) | 50 | 60 | 70 | 80
1.25 [ 1.25 | 1.25 | 1.25
1.25 | 1.25 | 1.25 | 1.25
1.25 | 1.25 | 1.25 | 1.25
1.25 | 1.25 | 1.25 | 1.25
1.25 | 1.25 | 1.25 | 1.25
1.25 | 1.25 | 1.25 | 1.25
1.5 | 1.25 { 1.25 | 1.25
1.25 | 1.25 | 1.25 | 1.25
125 [ 1.25 | 1.25 | 1.25
1.25 | 1.25 | 1.25 | 1.25

O 0 N O AW N

—
o

Table 4.7: 4in used to obtain the values in Table 4.6 (CASE B)
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a? (x107%)
1 | 2 [ 3 T 4 [ 5
Scaled DV 90.437 | 63.947 | 52.212 | 45.213 | 40.441
Final DV
1 125.893 | 73.091 | 70.557 | 49.717 | 43.868
2 23.336 | 53.545 | 36.664 | 21.137 | 23.151
3 45.632 | 15.268 | 14.833 | 35.217 | 21.510
4 6.389 | 10.704 | 5.599 | 6.318 | 4.957
5 10973 | 5.375 | 12.207 | 4.213 | 9.637
6 9.800 | 6.209 | 6.953 | 5.365 | 4.914
7 17.627 | 8.610 | 10.775 | 5.638 | 9.310
8 17.719 | 0.124 | 8.802 | 0.150 | 9.901
9 0.100 | 13.250 { 0.100 | 0.100 | 0.100
10 0.100 | 9.332| 0.711 0.313 | 8.307
11 18.206 | 0.100 | 13.746 | 9.473 | 8.352
12 0.160 | 0.100 | 0.100 | 9.266 | 0.100
Ay 1.6710 | 1.4574 | 1.2620 | 1.4851 | 0.8632
Ay 1.0 1.0 1.0 1.0 1.0
iter. for 44 19 15 32 32
convergence
a? (x107%)
6 | 7 | 8 [ 9 [ 10
Scaled DV | 36.918 | 34.180 | 31.973 | 29.979 | 28.594
Final DV
1 25.936 | 32.194 | 9.723 | 16.757 | 20.331
2 30.650 { 21.255 { 27.425 | 32.495 | 38.508
3 28.247 | 20.736 | 28.618 | 16.565 | 11.434
4 11.168 | 5.141 | 4.083{ 8.798 | 2.041
5 10.922 | 7.713 | 6.737 | 4.348 } 2.369
6 6.795 | 4.260 | 3.815 | 6.692 | 2.934
7 0.101 | 8.299 | 0.100 | 0.100 | 0.152
8 2.501 | 9.363 | 0.100 | 9.628 | 0.885
9 0.245 | 0.100 | 6.482 ) 1.332 | 3.242
10 9.107 | S.183 | 8.323 | 0.100 | 5.016
11 T.744 1 7.379 { 8218 T7.737 | 2.532
12 8.583 | 0.100 | 6.782 {10.099 { 0.100
Au 0.7522 } 0.8544 | 0.7937 | 0.9117 | 1.7622
Ay 1.0 1.0 1.0 1.0 1.0
iter. for 21 18 22 22 49
convergence

Table 4.8: Optimal design variables for 82 = 50 in CASE A
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a® (x107%)
1 [ 2 | 3 | 4 [ 5
Scaled DV || 108.789 | 76.924 | 62.807 | 54.392 | 48.650
Final DV
1 84.594 | 61.454 | 51.563 | 45.089 | 40.826
2 84.594 | 61.454 | 51.563 | 45.089 | 40.826
3 84.306 | 61.524 | 51.036 | 45.095 | 40.707
4 5.546 | 5.008 | 4.317 | 4.207 | 4.121
5 5.454 | 5.001 | 4.512 | 4.338 | 4.095
6 5454 | 5.001 | 4.512 | 4.338 | 4.095
7 0.100 | 0.100 | 0.100 | 0.100 | 0.100
8 0.100 { 0.100 | 0.100 | 0.100 | 0.100
9 0.100 | 0.100 | 0.100 | 0.100 | 0.100
10 0.100 [ 0.100 | ©0.100 | 0.100 | 0.100
11 0.100 ) 0.100| 0.100 ) 0.100 | 0.100
12 0.100 | 0.100 | 0.100 | 0.100 | 0.100
Au 2.8377 | 2.8718 | 2.8898 | 2.9014 | 2.9063
Ay 1.0 1.0 1.0 1.0 1.0
iter. for 5 8 7 6 6
convergence
a? (x10-°
6 | 7 [ 8 19 | 10
Scaled DV || 44.411 | 41.117 | 38.461 | 36.261 | 34.401
Final DV
1 37.634 | 35.206 | 35.938 | 31.444 | 30.105
2 37.634 | 35.206 | 36.090 | 31.444 | 30.105
3 37.519 | 35.082 | 7.280 | 31.387 | 30.066
4 3.425 | 3.669 | 2.885| 3.580 | 3.369
5 4.177 { 3.703 | 2.866 | 3.494 | 3.349
6 4177 ) 3.703 | 3.456 | 3.494 | 3.349
7 0.100 | 0.100 | 7.681 | 0.100 | 0.100
8 0.100 | 0.100 |} 0.359 | 0.100 | 0.100
9 0.100 | 0.100 | 0.384 | 0.100 | 0.100
10 0.100 | 0.100 | 7.000 { 0.100 | 0.100
11 0.100 | 0.100 { 0.100 | 0.100 | 0.100
12 0.100 { 0.100 | 0.100 { 0.100 | 0.100
Au 2.9081 | 2.9088 | 1.8801 | 2.9002 | 2.8976
Ay 1.0 1.0 1.0 1.0 1.0
iter. for 5 6 23 8 7
convergence

Table 4.9: Optimal design variables for 32 = 50 in CASE B
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Case 1 | Case 2 | Case 3 | Case 4 | Case 5

Final Wt. || 2451.3 | 2053.0 | 2090.6 | 1915.6 | 2067.0
Final DV

1 73.849 | 41.076 | 55.595 | 38.306 | 60.319

2 70.699 | 49.211 | 55.391 | 68.734 | 48.760

3 13.262 | 74.820 | 38.403 | 44.107 | 50.104

4 16.100 | 2.146 | 1.6065 1.227 2.841

) 7.730 1.843 | 1.4806 1.612 1 2.169

6 8.068 | 1.819 | 1.5676 | 3.161 | 2.834

7 3.864 ( 0.100| 0.100{ 0.100%{ 0.170

8 20.163 { 0.100 | 0.100 | 0.451 { 0.100

9 21.568 | 0.100 | 0.100 | 7.939 | &8.984

10 5.694 | 0.100 { 0.100 | 0.100; 0.100

11 0.100 | 0.100{ 0.100 | 0.100{ 0.100

12 0.100 | 0.100 | 0.100 0.100 9.014

Ay 0.9765 | 3.1055 | 3.3391 | 2.6755 | 2.5236

For all j # 1, the initial conditions are:
Case 1: p; = p;
Case 2: p; = p; + 3%
Case 3: p; = p; + 6%
Case 4: py = p, + 10%
Case 5: p; = p, + 50%

For all cases, (A\,)o = 1.0, (A,)o = 1.0

Table 4.10: Optimal values when 3% = 75 und o® = 1 % 107° for differing initial
conditions, when using a modal state space model

74




Case 1 | Case 2 | Case 3 | Case 4 | Case 5

Final Wt. || 2006.6 | 1952.6 | 1940.6 | 1943.7 | 1875.5
Final DV

1 52.392 | 47.085 | 28.699 | 32.257 | 63.124

2 52.392 | 48.486 | 64.095 | 64.893 | 39.146

3 53.498 | 59.061 | 55.951 | 46.706 | 41.904

4 2.804 | 3.565| 3.370 | 5.534 | 3.865

] 2933 | 2486 4.261 | 4.591 0.901

6 2933 | 1.621 | 3.601 { 4.992 | 3.438

7 0.100 | 0.556 [ 0.100( 0.237 | 0.102

8 0.100 { 0.100 | 0.407 [ 0.100 { 0.102

9 0.100 | 0.100) 5.331( 0.100 0.100

10 0.100 | 0.100 | 0.100| 0.100 ; 6.512

11 0.100 { 0.100{ 0.100{ 0.100 { 6.910

12 0.100 | 0.506 [ 0.100 | 9.956 { 0.100

Au 2.8362 | 2.8044 | 2.3156 | 2.1606 | 2.3039

For all j # 1, the initial conditions are:
Case 1: p; = p,
Case 2: py =p, + 3%
Case 3: p; = p; + 6%
Case 4: p, = p; + 10%
Case 5: py = p, + 50%

For all cases, (A,)o = 1.0, (A;)o = 1.0

Table 4.11: Optimal values when 8% = 75 and a® = 1 x 10~° for differing initial
conditions, when using a physical state space model
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32

a? (x107%) 50 60 70 80
1 2847.1 | 2466.0 | 2166.6 | 1969.2
2 2045.9 | 1782.1 | 1579.7 | 1443.2
3 1685.6 | 1478.8 | 1327.5 | 1197.2
4 1470.9 { 1298.0 | 1162.0 | 1052.0
3 132521 1174.2 | 1049.3 | 952.1
6 1217.0 | 1083.2 | 965.9 | 880.0
7 1134.1 | 1012.4 | 901.4 | 823.8
8 1065.7 | 955.3 | 849.4 | 776.5
9 1014.5 | 907.9 | 806.4 | 735.3
10 961.3 | 861.0 | 770.0 { 700.2

Table 4.12: Optimal weight using a modal state-space realization and inverse design

variable approximations, where the initial condition for each case is the converged
solution from the previous case.
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a® (x107°)
1 [ 2 | 3 [ 4 | 5
Final DV
1 125.893 | 82.406 | 66.777 | 57.864 | 50.877
2 23.336 | 19.075 | 16.010 | 14.170 | 13.257
3 45.632 | 36.194 | 29.987 | 26.286 | 23.752
4 6.389 | 6.372 | 5.386 | 4.736 | 4.105
5 10973 | 8.135| 6.487 ! 5.952 | 5.429
6 9.800 [ 8.558 | 7.433 | 6.631 | 6.031
7 17.627 { 12.148 | 12.085 | 9.342 | 11.208
8 17.719 { 10.689 | 8.446 | 6.718 | 5.422
9 0.100 { 0.100 | 0.100 | 0.100 | 0.100
10 0.100 | 0.100 | 0.100 | 0.100 { 0.100
11 18.206 | 11.326 | 8.820 | 8.172 | 7.764
12 0.100 | 0.100 | 0.100 | 0.100 | 0.100
Ay 1.6710 | 1.6281 ] 1.6293 | 1.6325 | 1.6273
Ay 1.0 1.0 1.0 1.0 1.0
iter. for 44 16 2 2 2
convergence
a® (x107%)
B 6 | 7 | 8 | 9 | 10
Final DV
1 46.745 | 42.850 | 40.259 | 37.112 | 33.742
2 12.302 | 11.800 | 11.108 | 11.403 | 11.179
3 21.926 | 20.458 | 19.239 | 18.610 | 17.761
4 3.996 | 3.621 | 3.446 | 4.045 | 3.745
G} 5.144 | 4.708 | 4.451 | 3.751 | 4.167
6 5.556 | 5.241 | 4.926 | 4.681 | 4.634
7 7.501 | 9.330 | 8.344 | 7.053 | 6.621
8 5286 | 4.390 | 4.167 | 5.319 | 5.070
9 0.100 | 0.100 | 0.100 { 0.100 [ 0.100
10 0.100 { 0.100 { 0.100 | 0.100 | 0.100
11 7.237 | 6.603 | 6.216 | 4.678 | 5.357
12 0.100 | 0.100 | 0.100 | 0.100 [ 0.100
Ay 1.6243 | 1.6163 | 1.6167 | 1.5670 | 1.5540
Ay 1.0 1.0 1.0 1.0 1.0
iter. for 2 2 2 4 3
convergence

Table 4.13: Optimal design variables for 3% = 50 cases given in Table 4.12
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a? (x107°)
1 [ 2 | 3 [ 4 | 5
Final DV

1 114.695 | 82.224 | 68.219 | 59.872 | 54.153
2 15.953 | 11.936 | 9.905 | 8.695 { 7.866
3 39.232 | 28.262 | 23.448 | 20.579 | 18.614
4 5278 | 4.230 | 3.510 | 3.082 | 2.789
5 9.266 | 6.601 | 5.478 | 4.809 | 4.351
6 9.229 | 6.831 | 5.670 | 4.978 | 4.505
7 14.382 | 10.519 | 8.747 | 7.686 { 6.966
8 12.023 | 8.285 | 6.865 | 6.016 | 5.421
9 0.100 | 0.100 | 0.100 { 0.100 | 0.100
10 0.100 { 0.100 ; 0.100 | 0.100 | 0.100
11 15.158 | 10.676 | 8.848 | 7.760 | 7.010
12 0.100 { 0.100 | 0.100 { 0.100 | 0.100
Ay 1.5486 | 1.5754 | 1.5948 | 1.6090 | 1.6202

A, 10 | 10 | 10 | 1.0 | 10

iter. for 20 5 2 2 2

convergence
af (x107%)
6 | 7 | 8 | 9 | 10
Final DV

1 49.952 | 46.684 | 44.047 | 41.861 | 39.029
2 7.258 | 6.784 | 6.402 | 6.086 | 6.565
3 17.170 | 16.047 | 15.141 | 14.390 | 13.696
4 2575 2408 | 2.273 | 2.162 | 2.445
5 4.015 | 3.754 | 3.543 | 3.369 | 3.122
6 4.157 | 3.887 | 3.668 | 3.483 | 3.280
7 6.433 | 6.018 | 5.683 | 5.406 | 4.564
8 4982 | 4.637 | 4.355 | 4.114 | 3.225
9 0.100 | 0.100 | 0.100 | 0.100 | 0.100
10 0.100 | 0.100 { 0.100 | 0.100 | 0.100
11 6.461 | 6.034 | 5.691 | 5.406 | 4.685
12 0.100 | 0.100 | 0.100 | 0.100 | 0.100
Au 1.6300 | 1.6383 | 1.6453 | 1.6513 | 1.6330

A, 10 | 1.0 | 10 | 10 | 10

iter. for 2 2 2 2 4

convergence

Table 4.14: Optimal design variables for 3% = 60 cases given in Table 4.12
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state space realization

physical | modal } physical
Initial output — 2.0575 1.943
response (x107%)
Initial control — 50.3162 | 49.876
effort
Initial weight — 2077.3 1 2100.9
Final DV
1 73.091 | 72.075 | 70.662
2 53.545 | 53.401 | 52.344
. 3 15.268 | 15.355 | 15.203
4 10.704 | 11.849 | 11.718
) 5.375 4.579 4.856
6 6.209 6.921 7.317
7 8.610 | 10.486 { 10.259
8 0.124 0.152 0.125
9 13.250 | 16.378 | 15.847
10 9.332 | 11.299 9.687
11 0.100 0.100 0.100
12 0.100 0.100 0.100
Final weight 2077.3 | 2100.9 | 2067.8
A 1.4574 | 1.4140 | 1.4510
iter. for
convergence 19 3 2

Table 4.15: Optimal designs for 82 = 50 and a® = 2 x 10~ when modal and physical
state space realizations are used.
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after approx. prob. solution scaling for | number of

iter. | initial v weight | E[u’ Ru] | E[ly]Wy,] | constraint | repeated
no. | weight (x1073%) | satisfaction | eigenvalues
— 9236 | — — 450.6 27.52 6.395 4

1 5906.5 | 1000 | 4739.4 | 1313.3 27.25 12.39 0

2 158726.9 | 368 | 57118.7 49.33 1.944 0.9858 0

3 | 56306.8 | 136 | 34800.1 677.9 0.810 1.367 0

4 [47556.1 | 50.9 | 44924.6 121.8 2.159 1.465 0

5 |65834.9 ] 19.5 | 64824.7 48.77 1.943 0.9758 0

6 |63258.9 | 7.93 | 13340.9 30.77 0.951 0.5307 0

7 8333.5 | 3.68 | 3092.7 66.99 2.154 1.279 0

8 3954.5 | 2.11 | 31254 47.45 1.844 0.9235 0

9 2886.1 | 1.54 | 2586.5 50.16 2.009 1.005 0

10 2508.2 | 1.32 | 2442.3 49.64 1.973 0.9877 0

11 2412.21 1.25 | 2317.2 50.04 1.997 0.9999 0

12 2316.9 | 1.22 | 2255.3 49.50 1.965 0.9845 0

13 222051 1.21 1 21924 49.72 2.004 0.9971 0

14 2186.0 | 1.20 | 2153.1 49.64 1.992 0.9931 0

15 2138.0 1 1.20 | 2113.8 49.92 1.996 0.9979 0

16 2109.3 | 1.20 | 2098.7 49.72 1.996 0.9950 0

17 2088.2 | 1.20 | 2087.9 49.85 2.000 0.9970 0

18 2083.5 | 1.20 | 2084.7 49.82 1.999 0.9973 0

19 2079.1 | 1.20 | 2080.3 49.89 2.000 0.9986 0

— 20773 — — 49.99 2.000 — 0

‘Table 4.16: Iteration history for 8% = 50 and a? =2 x 107° for CASE A

82




after approx. prob. solution | scaling for | number of
iter. | initial | 5 | weight | E[uTRu] | E[yTW4y,] | constraint | repeated

no. | weight (x107%) | satisfaction | eigenvalues
— 923.6 | — — 533.7 28.10 7.692 4
1 7105.1 | 1000 | 6933.2 46.97 1.461 0.8402 4
2 | 5825.1| 368 | 1644.6 | 97.13 0.9261 1.695 0
3 |2788.91 136 |2287.5| 51.95 2.092 1.080 0
4 2469.9 | 51.0 | 2399.1 50.14 2.000 1.004 0
5 |2409.2 | 19.5]2397.2 1 50.04 2.001 — 3
6 |2397.2 | 7.98 { 2399.9 | 50.00 1.999 — 3
7 12399.7{ 3.72 | 2395.8 | 50.01 2.000 — 3
S 12395.8| 2.16 | 2395.4| 50.01 2.000 — 3
— 123954 | — — 50.01 2.000 — 3
Table 4.17: Iteration history for 4% = 50 and a* = 2 x 10~3 for CASE B
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o? (x1075) || 50

60

5086.7
3545.8
2943.0
2606.4
2342.9
2188.7
1372.0
1838.8
1094.5
1649.4
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5222.9
3717.4
2719.9 >
2299.7
2223.2 .
1995.8
1302.3
1720.4
1620.1
1556.5

Table 4.18: Optimal weight using a modal state-space realization, the symmetric set
of initial conditions, and hybrid design variable approximations. (CASE C)
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Table 4.19: 4,,;» used to obtain the values
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in Table 4.18 (CASE C)




,32

a? (x1079%) 50 60
4081.2 | 2598.2
2069.7 | 1951.7
2557.3 | 1619.8
2231.5 | 1428.2
1522.2 | 1272.9
1401.8 | 1206.5
1656.5 | 1127.0
1573.4 | 939.4
1461.8 | 978.2
1390.7 | 957.7

© 00 ~ O U B W N

p—
o

Table 4.20: Optimal weight using a physical state-space realization, the symmetric
set of initial conditions, and hybrid design variable approximations. (CASE D)

ﬂ2

a® (x107%) || 50 | 60
1.25 | 1.25
1.25 1 1.25
1.25 | 1.25
1.25 | 1.25
1.25 { 1.25
1.25 | 1.25
1.25 | 1.25
1.25 | 1.25
1.25 | 1.25
1.25 | 1.25
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Table 4.21: ~i, used to obtain the values in Table 4.20 (CASE D)
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o’ (x107%)
1 | 2 ] 3 ] 4 | 5
Scaled DV || 90.437 | 63.947 [ 52.212 | 45.213 | 40.441
Final DV

116.537 | 81.263 | 67.488 | 59.206 | 52.214
87.551 | 63.283 | 51.825 | 45.141 | 40.642
61.273 | 42.350 | 36.864 | 31.630 | 28.695
58.520 | 39.845 | 35.986 | 30.204 | 27.994
32.627 | 23.613 | 19.781 | 15.285 | 13.336

9.427 | 6.661 | 4.829 | 4.572 | 4.043
28.100 | 17.570 | 14.569 { 15.321 | 14.587
57.705 | 40.663 | 22.056 | 25.805 | 23.107
46.652 | 32.261 | 23.649 | 24.185 | 21.667
33.016 | 20.119 | 17.652 | 21.179 | 18.471
39.318 | 25.292 | 22.653 | 23.688 | 22.125

0.100 | 0.100 { 0.100 | 0.100 | O0.101
0.4020 | 0.4287 { 0.4319 { 0.3717 | 0.3671

1.0 1.0 1.0 1.0 1.0

iter. for 30 21 18 21 17

convergence

P =
N,HOQOOON@CJI»PC«DMF—*

> >
e
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a® (x107%)

6 1 7 | 8 ] 9 | 10
Scaled DV || 36.918 | 34.180 | 31.973 | 29.979 | 28.594
Final DV

1 47.435 | 29.891 | 41.464 | 18.029 | 37.093
37.998 | 27.263 | 31.927 | 23.017 | 28.348
26.607 | 22.176 | 22.521 | 25.037 | 20.347
28.581 | 11.703 | 21.748 | 5.455 | 19.389
10.641 | 9.119 } 10.791 | 5.107 | 9.335
3.741 | 6.946 | 3.188 | 4.202 | 2.903
12.179 | 6.183 | 10.791 | 0.100 | 9.717
24.414 | 5.617 | 18.756 | 8.244 | 16.051
21.866 | 7.299 | 15.194 | 8.509 | 15.714
18.713 | 0.292 | 14.827 | 0.100 | 13.490
20.965 | 6.080 | 16.910 | 9.849 | 15.053
0.100 | 0.100 | 0.100 | 9.836 | 0.100
0.3447 | 0.5782 | 0.3781 | 0.7831 | 0.3719

Ay 1.0 1.0 1.0 1.0 1.0
iter. for 12 33 20 21 24
convergence
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Table 4.22: Optimal design variables for 3% = 50 in CASE C
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a® (x107?%)
1 | 2 | 3 | 4 |
Scaled DV || 108.789 | 76.924 | 62.807 | 54.392 | 48.650
Final DV
1 112.468 | 25.786 | 56.915 | 49.314 | 48.663
2 112.468 | 28.096 | 56.915 | 49.314 | 48.663
3 112.459 | 101.308 | 56.911 | 49.310 | 15.832
4 0.842 4.676 | 13.774 | 12.225 | 3.667
5 0.842 3.696 | 13.784 | 12.393 | 4.634
6 0.842 3.951 | 13.784 | 12.393 | 4.634
7 0.100 0.100 | 0.608 | 0.591 | 1.125
8 0.100 0.100 | 0.604 | 0.591 | 0.100
9 0.100 0.100 | 0.604 | 0.591 | 0.100
10 0.100 0.100 | 0.608 | 0.591 | 1.123
11 0.100 8.171 | 0.598 | 0.591 | 0.100
12 0.100 8.960 | 0.598 | 0.591 | 0.100
Au 3.9224 | 2.3377 | 2.2676 | 2.1723 | 2.2227
Ay 1.0 1.0 1.0 1.0 1.0
iter. for 13 32 4 4 15
convergence
a® (x107°)
6 | 7 [ 8 | 9 | 10
Scaled DV || 44.411 | 41.117 | 38.461 | 36.261 | 34.401
Final DV
1 45.880 | 37.259 | 34.749 | 32.774 | 31.123
2 45.880 | 37.259 | 34.749 | 32.774 | 31.123
3 12.703 | 37.256 | 34.745 | 32.770 | 31.120
4 4.152 | 8534 | 8.733| 7.631 | 7.326
5 3.771 | 8.575 | 8.736 | 7.649 | T7.344
6 3.766 | 8.575 | 8.736 | 7.649 | 7.349
7 0.970 | 0.347 | 0.400 | 0.319} 0.313
3 0.100 | 0.346 { 0.383 | 0.308 [ 0.303
9 0.100 | 0.346 | 0.383 | 0.308 | 0.303
10 0.970 | 0.347 ! 0.400 | 0.319 | 0.313
11 0.100 | 0.342 | 0.393| 0.284 | 0.283
12 0.100 | 0342 | 0.393 | 0.284 | 0.283
Ay 2.2502 | 2.3706 | 2.2168 | 2.3701 | 2.3404
Ay 1.0 1.0 1.0 1.0 1.0
iter. for 16 4 6 5 5
| convergence

Table 4.23: Optimal design variables fer 8° = 50 in CASE D

87




Chapter 5

Conclusions and
Recommendations

The problem of the integrated control/structure design optimization of large flexible
structures has been investigated for the case of full state feedback control of structures
subject to a stochastic disturbance input model. Due to the special nature of the
controller and problem formulation, the controller design variables (elements of K)
were found to be given by the solution of an associated LQR problem. Therefore, these
variables are not treated explicitly as design variables in the optimization procedure,
but rather sized by a scaling procedure developed to identically satisfy the constraints.
A research computer program was developed to solve the problem using a sequential
approximations technique and commercially available nonlinear programming code.
Very eflicient expressions for the required gradients were derived that significantly

reduced the computational burden of the solution algorithm.

The solution algorithm was applied to the DRAPER I tetrahedral truss strucutre
for a range of constraint objectives. Convergence could be obtained, and an optimal
solution found, in every case attempted in this work. However, the problem was found
to have many local minima. Although this is generally the case for non-globally convex
problems, it is the dominant factor in this particular problem. The solution method
was very sensitive to the various parameters that must be rather arbitrarily chosen,
such as move-limits and initial conditions. Altering either of these two, for example,
can result in the design converging to distinctly different regions of the design space,

with a resultant difference in the optimal weight found.
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More consistent results were obtained, when varying the design constraints, for
cases when a physically based state space realization was used than those cases where
a modal state space realization was used, although often the optimal weight found
was larger. Here, “consistent” refers to the similarity of optimal designs when the
constraints were changed. This is due to the difficulties encountered in evaluating
accurate derivatives for eigenvectors associated with repeated eigenvalues. The sen-
sitivity of these gradients to inaccuracies in the eigenvectors in cases where repeated
eigenvalues are detected means that when using a modally based state space system,
the solution is biased away from symmetric designs. Cases when a physically based
state space system was used indicated no such biasing, and in fact many optimum

designs in these cases exhibited symmetry (repeated eigenvalues).

There was a great deal of variation in the optimal designs when modal state space
realizations and inverse design variable approximations were used, due largely to the
first few iteration steps. Initial steps tended to be quite large due to: (i) large move-
limits, (ii) the inaccuracies noted in the repeated eigenvector derivatives, and (iii) the
significant scaling of the structure due to inaccuracies in the inverse approximations.
This caused the design to “jump” around in the design space for a few iterations, not
unlike the process of “simulated annealing”, and the optimum weight obtained was
more often than not lower than cases where the initial iterations were “well-behaved”,

as in the case of a physical state space representation and/or hybrid design variable

approximations.

For this reason, and because of the apparent existance of so many local minima, it
is recommended that future work should investigate various options for resolving the
best solutions. Systematic solutions using random initial conditions, or the intentional
inclusion of a random perturbing factor as in the “simulated annealing” procedure,

may be required to obtain solutions.

This work concentrated on the case when full state feedback control is used. How-
ever, in most designs of practical significance, full state feedback is probably not
practical. Future work should include studies on different controller methodologies,

and how they affect the solution algorithm. Examples of large dimension must be
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attempted and solved to give confidence that this solution process is viable in realistic

design situations.

Even with these problems, our conclusion is that the combined control/structure
optimization problem has a high payoff potential, and should continue to be explored.
The ability of the procedure to trade-off structural mass verses controller energy is
an important tool for coupling structural system and controller design synthesis, and

will be crucial in the design of realistic structures for widespread application in the

coming decades.
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Appendix A

Results Concerning Matrix Trace Derivatives

0s

For scalar s and matrix A with elements a;;, define the matrix {—] as

0A
21 _2
JdA i Oai;

Then the following results on the trace operator hold:

0
atr[A] = I
0 _ 0 _pT
"37 tl‘[AB] = 571' tr[BA] = B
9 aTB = 2 BT =
EX tr[A B]—aA tr([B*4 = B
9 wBTAC] = BCT
d0A
—a—tr[ATBA] = (B+BT)A
0A
O \{ABAT] = A(B+ BT)
0A
0 T _
74 tr[A"A] = 24
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Appendix B

Derivatives of Eigenvectors Associated with Repeated
Eigenvalues of Structural Systems

This appendix presents two methods for obtaining eigenvector derivatives of struc-
tural systems with distinct eigenvalue derivatives. The first method, due to Mills-
Curren [Mil-2], requires only one eigenvalue and its associated complete subspace
of cigenvectors, and only the results are given here. The second method is derived
here and assumes knowledge of the entire system eigenstructure. For a more general
method that does not require distinct eigenvalue derivatives, the interested reader is

referred to Juang, et.al. [Jua).

Method 1

The real, symmetric structural eigenproblem (defining K and M as the stiffness

and mass matrices respectively) is

F¢,=0 fort=1,...,n (B.1)
where
F,=[K - \;M)| (B.2)
with mass normalization
dTMop; = §; fori=1,...,n (B.3)

where §;; is the Kronecker delta function.
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Let the first and sccond derivatives with respect to some parameter be denoted

by " and ” respectively. Then differentiating equation (B.1) gives,

Fl¢,+ Fip, =0 fori=1,...,n (B.4)

Premultiplying by @7, and using the orthonormality condition (B.3), we can obtain

an expression for the eigenvalue derivatives as

N = ¢T[K' — M\ M), fori=1,...,n (B.5)

Because the original system is symmetric, an independent eigenvector will exist
for cvery eigenvalue. However, eigenvectors associated with repeated eigenvalues will
not be unique, but will form a subspace of the same dimension as the eigenvalue
multiplicity, from which any vector will be an eigenvector of that eigenvalue. Equa-
tion (B.5) cannot be used to find the derivatives of eigenvalues with multiplicities
greater than one untii the arbitrary nature of the associated eigenvectors is removed,

as the derivatives may not exist for every choice of A.

To remove the arbitrariness in the 4, an eigenvector continuity condition must
be imposed to insure that the system eigenvectors remain continuous as the system
is perturbed about the condition where the repeated eigenvalues are found. This
essentially chooses a unique set of eigenvectors from the subspaces associated with

the repeated eigenvalues, any ensures existance of the eigenvector derivatives.

Since the eigenvectors associated with repeated eigenvalues form a subspace, we

may write

1/)). = Z b,a¢; (B.6)
2 Q,
or
W, = b,4 (B.7)
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In the above equations, the ¢, are the eigenvectors of the repeated eigenvalue A,.
where le Q, = {1,714+ 1,...,i + m; — 1} and m, is the multiplicity of A;. The vectors
Y, are linear combinations of the ¢,, with the coefficients a¢; to be determined. The
columns of ¥; contain the vectors zl)j, the columns of ®; contain the vectors @,, and
a;; is the ij** element of A. The matrix ®; is the matrix of nominal eigenvectors
associated with A, and ¥, is the matrix of unique eigenvectors associated with A,.
Substitution of equation (B.7) into equation (B.1) shows that the 3 satisfy the

original eigenproblem for any choice of the a,;.

After imposing the continuity condition, the columns of A and the respective

eigenvalue derivatives are found by solving the subeigenproblem

(K’ = \Ma; = Ma; (B.

9.2
=

A unique matrix A can be found in this manner only if the derivatives of repeated

eigenvalnes are distinct, i.e. iff
Al # AL when A=) (B.9)

Assuming that this is so, the A matrix then defines a set of unique linearly inde-
pendent orthogonal eigenvectors for the original eigenproblem (B.1). The derivatives
of these eigenvectors can now be found. From this point, assume that the ¢, repre-

sent the set of unique eigenvectors as found above. Then the eigenvector sensitivity

is assumed to have the form

¢ =V, + d.c; fori=1,...,n (B.10)
where V; is the vector solution to

F\V, = -F/¢, fori=1,...,n (B.11)

Since F; is not of full rank, equation (B.11) cannot be solved by direct inversion.
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However. if the appropriate m; rows and columns are eliminated from F; along with
the corresponding rows from the right-hand side of equation (B.11), then a valia
solution for ¥; can be found. Guidance for the partitioning of equation (B.11) can be

found in the original reference [Mil-2], and will not be reproduced here.

The elements c;; of the vectors ¢; can be found from

ci = —1¢] (M'¢; + 2MV}) fori=1,...,n (B.12)
¢ (K" =2 M' = \\M")¢; + 297 FLV; . .
Cji = 200 =) fori,j=1,...,nand i #j
(B.13)
Method 2

In this method, we again assume that a unique set of eigenvectors for the eigen-
problem have been found as outlined in Method 1 above. However, we now assume

the eigenvector derivative is a linear combination of these eigenvectors, in the form

$ =3 ¢b; = ob; (B.14)
Jj=1

Substituting equation (B.14) into the mass orthonormality condition (B.3), we obtain

bis = =207 M, (B.15)

For any j # i such that A; # \;, expressions for the coefficients b;; are well known

[Fox], and are

LY P
b= oy 4% (B.16)

where
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7, = [K' = M) (3.17)

To obtain the remaining unknown coefficients, differentiate equation (B.4) again,

to get
F!'¢, + 2F!d. + Fip! =0 fori=1,...,n (B.18)
Premultiplying equation (B.18) by qSJI, for § such that A; = A;, we get
@] F{'¢p; +2¢7 Flp, =0 (B.19)
since (j);-rF,- = 0. Substituting equation (B.14) for the eigenvector derivative, we get
ST F'; + 27 F! (;: b,.-«f'.) =0 (B.20)
Consider the first term of equation (B.20):
STF!'p, = @] [K" —2XM' = \M" — X! M),
= [K" = 2XM' — M") = M6 (B.21)
Now, consider the second term of equation (B.20): )

267 F! (f:bm) = 2¢7(K" ~ XM = MM (anbmbc)
=1

{=1

= 2¢JT[1\’” -~ A:x"[ - /\]Af,] (Z b(.‘(ﬁ()

=1
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= 2¢7 (K" = X;M — \;M] (Z b¢.¢z) +

{=1

+2(N = \)oTM (z b,.~¢,)

=1

= 2] F (Z bh‘¢e) + 2b;i(X; — X)) (B.22)
=1

To reduce the first term on the right hand side of equation (B.22), substitute equa-

tion (B.14) into the transpose of equation (B.4), to get

n T
¢TF =— (‘E be,-¢,) F; (B.23)
=1

Since A; = );, then F; = F;, and

0 if Adp = A
¢i Fi= (B.24)
A= X)PTM if A # N

Therefore,

i

2¢] F; (2 bm.~¢¢)

m=1

m=1

= =23 by(he — N)pI M (2 b,,.,-qs,,,)
tm1 m=1
n;

= =2 z": b(jb(,'(/\( - /\,') (B25)

=1
tyn,

where Q; = { k: A = A; }. Since we already have expressions for b,; and b,; for
¢ ¢ Q; given in equation (B.16), then equation (B.25) becomes

n n TZ' ; TZ:' [
267 F{ (gbm) = —22(=X) (&. _"fii Eff— ;:))

(1411
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o (91 2;0;) (67 Zidy)
=2 ; (A = Ae)

tyn,

(B.26)

Substituting equation (B.26) into equation (B.22), then equations (B.21) and
(B.22) into equation (B.20), we obtain

T [K" — 2N M — N M")p; — N!6i; + 2b;5( N, — X)) +

J

" (o7 Z;9;) (D1 Zid;)
SEP P sy v

ey

Forcing ¢ # j, and rearranging, gives the required coefficient b;; for 7,5 ¢ Q; as

1 " (@] Z;$;) (b Zih;)
vyl D P way v

wQ,;

+ 2] (K" — 20 M' — A, M"];
(B.28)

Note that differentiating the M-orthogonality condition (B.3) between ¢, and ¢,

gives
STMb,+ $TMS, = —$TM'd, (B.29)
Substitution of equation (B.14) into equation (B.29) gives

bi; + bji = —d),TM’qb,- fori=1,...,n (B.30)

Equation (B.28) satisfies equation (B.30), as would be expected. Also note that

forcing : = j in equation (B.27) gives the second derivative of the eigenvalues as




n (¢l Z; ¢ ) Ty Y 4 AN A
A =2 ; Doy T (K" — 2\ M’ = A M" |, (B.31)
X"
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